

Let's put the mean value theorem on pause

- intuitive notion: for differentiable functions, a function must take on its average slope at at least one point in an interval. Will have more time on Friday Outline before Winter Break:

।(३• Today: Extrema, Critical Numbers

12/2 Wed: First and Second derivative tests

12/4 Fri: Assessment (AD789, 10, 11); Mean Value Theorem

Thu after school review session

12/7 Mon: Derivatves MC test (45 min, calculators) — Bingo/Review due

12/9 Wed: Related Rates: using implicit diff.

12/11 Fri: Assessment (CD 8AD 12, 13), Optimization

¹²/ч Mon: Assessment (AD 14, 15, 16)

اء/اله Wed: Linearization, and Assessment (AD 18)

¹will do practice tests

for each

Here is a graph of f'(x), the <u>derivative</u> of a function f(x).

Where is f (not shown) increasing? Where is it decreasing? Justify your answer.

Graph of the derivative of f

A function f is increasing when
A function f is decreasing when

Where are the relative extrema of this function?

Relative Maximum:

- slope at point? D or undel.
- slope before point? وهم
- slope after point? hez.

Relative Minimum:

- slope at point? O or hidef
- slope before point?
- slope after point?

How to find relative extrema: First Derivative Test

- Find critical numbers of the function.
- Use the "interval method"/number line to find a sign change
- Use common sense/intuition to classify which C.N.'s are maxima and minima

(Also called the "First Derivative Test")

Example: Find and classify all relative extrema of the function. Justify your answer.

$$f(x) = x^{3}-3x^{2}+5$$

$$f'(x) = 3x^{2} - 6x = 0$$

$$3x(x-2) = 0$$

$$x = 0$$

$$x = 0$$

$$x = 0$$

f has a rel max ex=0

b/c. fl changed from pos_neg.

f har a rel. min ex=2

b/c... fl changes sign

from neg > pos.

Using a Number Line

- place C.N. on there
- Bunny Hops
- Test values between hops(plug into f '(x))

A Number Line Is NOT sufficient Justification on AP test. Need to use English

Concavity:

ı ne sıg derivati concave

Concave up

f con. up,
f11 is position

Concave down

f is long. Dobri f" it negative <u>Terrace Points</u> (similar to critical points) where f''(x) = 0

Inflection Points (similar to relative extremes) where f''(x) changes sign graphically: a change in concavity

Example:

Here is the <u>first derivative</u> of f(x). Over what intervals is f concave up and concave down?

Find the location of all inflection points for $f(x) = x^3-x^2-1$ Just like finding relative extrema.. except using f"

