Practice Midterm
AP Calculus AB
Find each of the following limits. If the limit does not exist, explain why.

1. $\lim _{x \rightarrow \infty} h(x)=\varrho$
2. $\lim _{x \rightarrow-\infty} h(x)=d$
3. $\lim _{x \rightarrow a^{+}} h(x)=$ ∞
4. $\lim _{x \rightarrow a} h(x)=d \cdot n e$.
5. $\lim _{x \rightarrow a^{-}} h(x)=f$
6. $\lim _{x \rightarrow 0} h(x)=d$
7. $\lim _{x \rightarrow b} h(x)=d n e:-\infty \neq f$
8. $\lim _{x \rightarrow b^{+}} h(x)=f$

Evaluate each limit. If the limit does not exist, explain why using proper mathematical notation.
12. $\lim _{x \rightarrow 5} \frac{x^{2}+3 x-40}{2 x-10}=\frac{(x-5)(x+8)}{2(x-5)} \Rightarrow \lim _{x \rightarrow 5} \frac{x+8}{2}=\frac{13}{2}$
13. $\lim _{x \rightarrow 5^{+}} \frac{-4 x+1}{2 x-10}=\operatorname{lic}_{x \cdot 35}+\frac{-4 x+1}{2(x-5)}=\frac{-4 \cdot 5^{+}+1}{2\left(5^{+}-5\right)}=\frac{-20^{-}+1}{2 \cdot 0^{+}}=\frac{-190^{-} \text {nee }}{0^{+}-p \operatorname{pos}} \Rightarrow \infty$
14. $\lim _{x \rightarrow 5^{-5}} \frac{2 x-7}{2 x-10}=\frac{2 \cdot 5^{-}-7}{2\left(5^{\circ}-5\right)}=\frac{10^{--7}}{2 \cdot 0^{-}}=\frac{3^{-}-\operatorname{pos}}{0^{-} \text {Reg }}-\infty$
15. $\quad \lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}=\frac{x+1-1}{(x)(\sqrt{x+1}+1)}=\frac{\nless}{(x)(\sqrt{x+1}+1)} \Rightarrow \lim _{x \rightarrow 0} \frac{1}{\sqrt{x+1}+1}=\frac{1}{\sqrt{0+1}+1}=\frac{1}{\mid+1}=\frac{1}{2}$
16. $\lim _{x \rightarrow \infty} \frac{-5+3 x}{4-3 x}=\frac{3}{-3}-1$
17. $\lim _{x \rightarrow-\infty} \frac{-5 x^{2}-2 x-3}{-23 x-11+6 x^{4}}=0$

C $\left.\begin{array}{c}x+1\end{array}\right)$
18. $\lim _{x \rightarrow \infty} \frac{5 x^{8}-2 x-1}{3-7 x^{3}-x+2 x^{3}}=\infty$ H. $4=\substack{x+\infty \\ 0 \\ 0}$
19. Find the equations) of the vertical asymptotes of $f(x)=\frac{2 x-8}{4 x^{2}-64}$. Justify your answer.

$$
\begin{aligned}
& \text { 19. Find the equations) of the vertical asymptotes of } f(x)=\frac{2}{4 x^{2}-64} \\
& \frac{2(x-4)}{4\left(x^{2}-16\right)}=\frac{2(x-4)}{4(x-4)(x+4)}=\frac{2}{4(x+4)} \quad \lim _{x \rightarrow-4} \frac{2}{4(x+4)}=\frac{2}{4(-4+4)}=\frac{2}{4(0) 2} \\
& \left.\frac{2}{0^{-}}=-\infty\right)
\end{aligned}
$$

20. Find the equation (s) of the horizontal asymptotes of $f(x)$ below. Justify with limits.

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
\frac{2 x-3}{50-10 x}, \text { if } x>5 \\
x^{2}-x-10, \text { if } x=5 \\
\frac{-3-2 x^{2}-10 x}{4 x^{2}-11 x-7}, \text { if } x<5
\end{array}, \lim _{x \rightarrow \infty} \frac{2 x-3}{50-10 x}=\frac{2}{-10}=-1 / 5\right. \\
& \text { Hit: } \\
& y=-\frac{1}{5} \text { and } \\
& y=-\frac{1}{2} \\
& \stackrel{\lim _{x \rightarrow-\infty}}{ } \frac{-3-2 x^{2}-10 x}{4 x^{2}-11 x-7}=\frac{-2}{4}=-1 / 2
\end{aligned}
$$

21. Find the values of a and b so that $\mathrm{g}(\mathrm{x})$ is everywhere continuous.

$$
\begin{aligned}
& g(x)=\left\{\begin{array}{lr}
x^{2}, & \text { if } x<2 \\
a x+b, \text { if } & 2 \leq x \leq 5 \\
3 x+1, & \text { if } x>5
\end{array}\right. \\
& \text { Cont aa } x=5 \\
& \lim _{x \rightarrow 2^{-}} g(x)=g(2)=\operatorname{l}_{x 2^{+}} g(x) \\
& \begin{array}{l}
\lim _{x \rightarrow 5} g(x)=g(5)=\lim _{x \rightarrow 5^{+}} g(x) \\
5 a+b=5 a+b=3(5)+1
\end{array} \\
& 5 a+b=16 \\
& \text { (2) })^{2}=2 a+b=2 a+b
\end{aligned}
$$

For 22-25, classify as jump, removable, or infinite discontinuities. Use limits to justify your answers.
22.

23.

$$
\lim _{x \rightarrow a^{+}} h(x)=-\infty
$$

$$
\lim _{x \rightarrow a^{-}} h(x)=c \neq d=\lim _{x \rightarrow a^{+}} h(x)
$$

24. JNF

25. Rem.

26. Explain why $f(x)=-2 x^{2}-5 x+6$ has a root in the interval $[0,1]$.

$$
f(x) \text { is cont. } \mathbb{R} \text { bl polynomial. }
$$

$$
\begin{aligned}
& f(0)=6 \\
& f(1)=-2(1)^{2}-5 \cdot 1+6=-1
\end{aligned}
$$

By IVT, there exists same $C \in(0,1)$
such that $f(c)=0$ because

$$
\begin{gathered}
6 \geq 0 \geq-1 \\
f(0) \geq f(c) \geq f(1) .
\end{gathered}
$$

27. Graph a possible graph for the function $\mathrm{H}(\mathrm{x})$ satisfying the following conditions:

Bonus: Find

