- 25 questions, 4 pts each
- Some multiple choice, some free response; Some non-calculator, some calculator

Standards Assessed on Midterm:
F-LF1: Calculate limits (including limits at infinity) using algebra.

- Using properties of limits: see chart on pg. 59 (sample: p. 91\#29-32)
- Using direct substitution
- Using factor and cancel ("massage the limit")
- Using rationalization
- Using trig substitution: some variation of $\sin ^{2} x+\cos ^{2} x=1 \quad$ (ex: \#4c on p.AP1-1)
- Using special trig limits: ("tattoos") see pg. 65
- P. 91-2: \#13-22, 73-77

F-LF2a: Estimate limits of functions (including one-sided limits) from graphs or tables of data.

- Generic graph with letters on axes; finding limits from a graph
- Generic graph on coordinate plane: p. $56 \# 23$ and 24 , p $58 \# 66$

F-BF1: Describe asymptotic behavior (analytically and graphically) in terms of infinite limits and limits at infinity.

- Be able to solve/identify problems by working in both directions:

○ "horizontal asymptote" $\Leftrightarrow \lim _{x \rightarrow \infty} f(x)=b$ for $b \in \mathbb{R} \quad$ (use degree rules to find $b ; p$ 198)

- "vertical asymptote" $\Leftrightarrow \lim _{x \rightarrow c} f(x)=\infty$ for $c \in \mathbb{R} \quad$ (plug in one-sided values to get $1 / 0^{+}$or $1 / 0^{-}$which then leads to $\pm \infty$)
- Sample problems: p 202 \#13-26 p 88 \#5-8, 17-20, 33-38

F-BF2: Discuss the various types of end behavior of functions; identify prototypical functions for each type of end behavior.

- Relative magnitude of functions: exponentials most dominant (higher bases), polynomials (higher degrees), logarithmic functions least dominant
- Even degrees: u shaped; odd degrees: kinda s-shaped; positive and negative leading coeff. reflect over x -axis
- Sample problem: Explain why $\lim _{x \rightarrow \infty} \frac{x^{500}}{e^{x}}=0$

F-LF2b: Apply the definition of a limit to a variety of functions, including piecewise functions.

- Find $\lim _{x \rightarrow \pi} f(x)$ for $f(x)= \begin{cases}\sin (x) & , x<\pi \\ x^{2} & , x=\pi \\ \cos (x)+1, & x>\pi\end{cases}$
- pg 80 \#51-55
- p. 92 61-62

F-C1: Define continuity at a point using limits; define continuous functions.
F-C2: Determine whether a given function is continuous at a specific point.

- Know the three things that must be true for a function to be continuous at a point.
- Demonstrate that $\lim _{x \rightarrow c-} f(x)=f(x)=\lim _{x \rightarrow c+} f(x)$ for a given $\mathrm{f}(\mathrm{x})$
- P. 80 \#83, 84
p. $92 \# 84$

F-C3: Determine and define different types of discontinuity (point, jump, infinite) in terms of limits.

- Jump : $\lim _{x \rightarrow c-} f(x)=d$ and $\lim _{x \rightarrow c+} f(x)=e \quad$ where d and e $\epsilon \mathbb{R}$ but $d \neq e \quad \mathrm{f}(\mathrm{c})$ may equal either d or e or neither or be undefined. (usually a piecewise function)
- Removable: $\lim _{x \rightarrow c} f(x)=b$ for $b \in \mathbb{R}$, but $f(c) \neq b \quad$ (usually a cancellation of a rational function, or a piecewise where the cases are $\mathrm{x}=\mathrm{c}$ and $\mathrm{x} \neq c$)
- Infinite: (same as vertical asymptote) either $\lim _{x \rightarrow c+} f(x)= \pm \infty$ or $\lim _{x \rightarrow c+} f(x)= \pm \infty \quad$ (usually where denominator has a term that cannot be canceled out)
-p80: \#43-48 p. 92 \#49-56 p. 92 \#68-70

F-C4: Apply the Intermediate Value Theorem and Extreme Value Theorem to continuous functions.

- Show/state that it is continuous on the interval in equation (hint: polynomial functions are always continuous everywhere)
- P. $92 \# 63$

