Remourble $D: s$
$\lim _{x \rightarrow a} f(x)=T$, where $T \in \mathbb{R}$
bat $f(a) \neq T$
Continuity A a point
A function $f(x)$ is continuous at show $x=c$ if all are true:
left $=$ right $(1) \lim _{x \rightarrow c}{ }^{\top} f(x)=a, a \in \mathbb{R}$. melt
ploys
$x \rightarrow c$
"theresa
show
show equally (III) $\lim _{x \rightarrow c} f(x)=f(c)=a$ bridge" roads met
bridect briber"

$$
\begin{align*}
& \text { 63 }^{3} f(x)= \begin{cases}x^{3}, & x \leq 2 \\
a x^{2}, & x>2\end{cases} \\
& \lim _{x \rightarrow 2^{-}} x^{3}=8 \quad f(2)=8 \\
& \lim _{x \rightarrow 2^{+}} a x^{2}=4 a \quad 8=4 a
\end{align*}
$$

62. $f(x)=\left\{\begin{array}{rl}3 x^{3} & , x \leq 1 \\ a x+5 & x>1\end{array}\right.$

Find a value to make a function continuous

$$
\begin{aligned}
& \text { 2.) } g(x)=\left\{\begin{array}{l}
\frac{16-x^{2}}{8-2 x}, x \neq 4 \\
k \quad x=4
\end{array}\right. \\
& \frac{(4+x)(4-y)}{2(y-x)}=\frac{4+8}{2} \Rightarrow \frac{4 \pi 4}{2} \frac{8}{2}=4
\end{aligned}
$$

(1) $\lim _{x \rightarrow 5} f(x) \longrightarrow \begin{aligned} & \lim _{x \rightarrow 5}-x^{2}-5 x-4=-4 \\ & h=-4=-4\end{aligned}$
(2) $f(5)=-4$

$$
\operatorname{lom}_{x \rightarrow 5+}-4=-4
$$

(3) $\underbrace{\lim _{x \rightarrow 5} f(x)}_{(1)}$

$$
\lim _{x \rightarrow 5} f(x)=-4
$$

$$
p(x)=\frac{3(x+5)}{2\left(x^{2}+3 x-10\right)}=\frac{3(x+5)}{2(x+5)(x-2)}=\frac{3}{2(x-2)}
$$

$$
\begin{aligned}
\text { 1) } x=-5, x=2 \\
\text { 2) } x=-5 \text { is rem } \\
\lim _{x \rightarrow 5} p(x)=\frac{3}{14} p(-5) \text { undeff }
\end{aligned} \left\lvert\, \begin{aligned}
& \frac{x=2}{}=\operatorname{Inf} . \\
& \lim _{x \rightarrow 2^{+}} \frac{3}{2(x-2)} \\
& \frac{3}{2\left(2^{+}-2\right)} \\
& \frac{3}{20^{+}} \\
& \frac{3}{0^{+}}=\infty
\end{aligned}\right.
$$

Miscellaneous AP problems

$$
\begin{aligned}
& {\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right]} \\
& \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{2\left(\sin ^{2} \theta\right)} \\
& \operatorname{lich}_{x \rightarrow 0} \frac{1-\cos \theta}{2\left(1-\cos ^{2} \theta\right)} \\
& \begin{array}{l}
(a+\cos (\theta) \\
(a+b)(a-b) \\
\left.a^{2}-b^{2}\right)
\end{array} \lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{2(1-\cos +t)(1+\cos \theta)}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos ^{2}(2 x)}{x^{2}} \lim ^{2}=(\sin x)^{2} x_{x \rightarrow 0} \frac{\sin (x)}{x}=1 \\
& \begin{array}{l}
\lim _{x \rightarrow 0} \frac{\sin ^{2}(2 x)}{x^{2}} \quad \frac{a^{2}}{b^{2}}=\left(\frac{a}{b}\right)^{2} \lim _{x \rightarrow c}(f(x))^{A}=\left(\lim _{x \rightarrow c}=f(x)\right)^{n} \\
l^{n}(2 x)^{2}
\end{array} \\
& \lim _{x \rightarrow 0}\left(\frac{\sin (2 x)}{x}\right)^{2} \\
& \left(\lim _{x \rightarrow 0} \frac{2 \sin (2 x)}{2 x}\right)^{2} \lim _{x \rightarrow c} 2 f(x)=2 \lim _{x \rightarrow c} f(x) \\
& \left(2 \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x}\right)^{2} \begin{array}{l}
\lim _{x \rightarrow 3} 2 x_{0} x, \\
2 x=0
\end{array}
\end{aligned}
$$

