For each function below, find the derivative function.

1. 
$$f(x) = 4\sqrt[3]{x^2} + 2x - \frac{1}{x}$$

Rewrite: 
$$f(x) = 4x^{\frac{2}{3}} + 2x - x^{-1}$$

Rewrite: 
$$f(x) = 4x^3 + 2x - x^{-1}$$
  
Power rule:  $f'(x) = 4 * \frac{2}{3}x^{-\frac{1}{3}} + 2 - -1x^{-2}$   $\Rightarrow$  Simplify:  $f'(x) = \frac{8}{3}x^{-\frac{1}{3}} + 2 + \frac{1}{x^2}$ 

2. 
$$g(t) = -2\cos t$$
  
 $g'(t) = -2 * -\sin t \rightarrow g'(t) = 2\sin t$ 

3. 
$$y = 5^x + \csc x - \tan x$$
  
 $y' = 5^x * \ln 5 - \csc x \cot x - \sec^2 x$  Just do it rule by rule

4. 
$$s(t) = e^{3t}$$
  
 $s'(t) = e^{3t} * 3 \rightarrow s'(t) = 3e^{3t}$   
(exponential derivative + chain rule)

D-AD2b

5. Find 
$$\frac{dy}{dx}$$
 if  $y = \sec^{-1} x$  Not on  $10/26$  test 
$$\frac{dy}{dx} = \frac{1}{x\sqrt{x^2 - 1}}$$
 Directly from

$$\frac{dy}{dx} = \frac{1}{x\sqrt{x^2 - 1}}$$

Directly from formula booklet

6. If 
$$y = \ln(5x + 1)$$
, find  $\frac{dy}{dx} |_{x=1}$ 

Note that this problem has you find the numerical slope value, so plug 
$$x=1$$
 in after finding  $dy/dx$ .  $\frac{dy}{dx} = \frac{1}{5x+1} * 5 \implies \frac{dy}{dx} = \frac{5}{5x+1}$  Now plug  $x=1$  in:  $\frac{dy}{dx} = \frac{5}{5(1)+1} = \frac{5}{6}$ 

(natural log rule and chain rule)

7. Find the derivative of 
$$y = \tan(3x^2 - 3)$$

$$y' = \sec^2(3x^2 - 3) * 6x \Rightarrow y' = 6x \sec^2(3x^2 - 3)$$

(trig derivative and chain rule)

D-AD3

Let 
$$f(x)=5x^2-3x+5$$
 and  $g(x)=x^2+\cos x$ 

8. If 
$$h(x) = f(x)g(x)$$
, find  $h'(x)$ . [No need to simplify.]

$$h(x) = (5x^2 - 3x + 5)(x^2 + \cos x)$$

List out ingredients: 
$$f: 5x^2 - 3x + 5$$
  $g: x^2 + \cos x$   $f' = 10x - 3$   $g': 2x - \sin x$ 

$$g: x^2 + \cos x$$

$$f' = 10x - 3$$

$$g'$$
:  $2x - \sin x$ 

Product Rule recipe: f'g + fg'

$$h'(x) = (10x - 3)(x^2 + \cos x) + (5x^2 - 3x + 5)(2x - \sin x)$$

9. If 
$$p(x) = \frac{f(x)}{g(x)}$$
, find  $p'(x)$  [No need to simplify]

List out ingredients: 
$$f: 5x^2 - 3x + 5$$

$$g: x^2 + \cos x$$

$$\frac{g : 2x - \sin x}{+\cos x) - (5x^2 - 3x + 5)(2x - \sin x)}$$

$$f' = 10x - 3 \qquad g': 2x - \sin x$$
Quotient Rule recipe: 
$$\frac{f'g - fg'}{g^2} \boxed{\frac{(10x - 3)(x^2 + \cos x) - (5x^2 - 3x + 5)(2x - \sin x)}{(x^2 + \cos x)^2}}$$

## D-AD4

10. Calculate the derivative of  $y = \sqrt[3]{6x^2 - 3x + 1}$ 

Rewrite:  $y = (6x^2 - 3x + 1)^{1/3}$ 

Chain rule:  $y' = \frac{1}{3}(6x^2 - 3x + 1)^{-\frac{2}{3}} * (12x - 3)$ Simplify:  $y' = \frac{12x - 3}{3(6x^2 - 3x + 1)^{\frac{2}{3}}} \Rightarrow y' = \frac{4x - 1}{(6x^2 - 3x + 1)^{\frac{2}{3}}}$ 

11. If  $y = \cos^2(3x - 12)$ , find  $\frac{dy}{dx}$ .

Rewrite:  $y = [\cos(3x - 12)]^2$ 

Chain rule....twice!! :  $\frac{dy}{dx} = 2 \left[ \cos(3x - 12) \right]^{1} * -\sin(3x - 12) * 3 \rightarrow -6 \sin(3x - 12) \cos(3x - 12)$ 

12. Use the table to find h'(1) if h(x) = f(g(x)).

Chain rule by definition:

$$h'(x) = f'(g(x)) * g'(x)$$

$$h'(1) = f'(g(1)) * g'(1)$$

$$h'(1) = f'(3) * -2$$

$$h'(1) = f'(3) * -2$$
  
 $h'(1) = -\frac{1}{2} * -2 \rightarrow \boxed{1}$ 

| x | f(x) | f'(x)          | g(x) | g'(x)          |
|---|------|----------------|------|----------------|
| 1 | 1    | 2              | 3    | -2             |
| 2 | 3    | $\frac{3}{2}$  | 1    | $-\frac{1}{2}$ |
| 3 | 4    | $-\frac{1}{2}$ | 2    | $\frac{3}{2}$  |
| 4 | 2    | -2             | 4    | 2              |

D-CD4

13. Show that  $f(x) = \begin{cases} 5x^2 - 3x - 6 & x \le 1 \\ -2x^2 - 2 & x > 1 \end{cases}$  is not differentiable at x=1.

Check continuity at x=1

From left and at 1:  $f(1^-) = 5(1)^2 - 3(1) - 6 \rightarrow -4$ 

 $f(1^+) = -2(1^2) - 2 \rightarrow -2 - 2 \rightarrow -4$  -4 = -4, so yes continuous

Check differentiability at x=1

$$f'(x) = \begin{cases} 10x - 3 & x \le 1 \\ -4x & x > 1 \end{cases}$$

Slope from left:  $f'(1^-) = 10(1) - 3 = 7$ 

Slope from right:  $f(1^+) = -4(1) = -4$ 

 $7 \neq -4$  so, not differentiable at x=1.

14. Find the values of a and b that would make f(x) differentiable.  $f(x) = \begin{cases} ax^2 + bx - 2 & x \le 2 \\ -2x^2 + 2x + 8 & x > 2 \end{cases}$ 

Continuous? Check 2 from left, right, and exactly 2

Left and middle = Right

$$a(2^2) + b(2) - 2 = -2(2^2) + 2(2) + 8$$

$$4a + 2b - 2 = -8 + 4 + 8$$

$$4a + 2b = 6$$

Differentiable? Check 2 from left, right, and exactly 2 of f'(x)  $f'(x) = \begin{cases} 2ax + b & x \le 2 \\ -4x + 2 & x > 2 \end{cases}$ 

$$f'(x) = \begin{cases} 2ax + b & x \le 2\\ -4x + 2 & x > 2 \end{cases}$$

Left and middle = Right

$$2a(2) + b = -4 * 2 + 2$$

$$4a+b=-6$$

 $\begin{cases}
4a + 2b = 6 \\
4a + b = -6
\end{cases}$ 

Solve system of equations

$$b = 12$$

$$4a + 12 = -6$$

$$4a = -18$$
 $a = -\frac{18}{4}$ 

15. Use the axes below to sketch a continuous function with a corner at x=3, a cusp at x=0, and a vertical tangent at x=-2.

 $Possible\ answer:$ 

See notes + handout on cusps, corners, and vertical tangents

