Three Trig Rules to know:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$$

$$\sin^2(x) + \cos^2(x) = 1$$

Divide these by $\sin^2(x)$ or $\cos^2(x)$ to get the other ones.

from these you can make double angle formulas

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

What is a derivative?

A derivative is a(n):

- limit of the difference quotient
- slope of a curve (slope is a number)
- can be a numerical value OR a function (outputs)
- input an x value, output the slope AT the x-value
- operator (something you can do to math; both sides of an equation)

Notation:			
symbol	how to say	comments	
f'(x)	(pronounced "f prime of x")	this function takes an x, outputs slopes at x	
у'	("y prime")	can be risky to use	
<u>dy</u> dx	("dy dx" "the derivative of y	with respect to x)	NOT a fraction best one to use imo
$\frac{d}{dx}f(x)$ ("derivative of f of x with respect to x") shows operator			

Equation of the tangent line: let's do #1 on the wksht together

$$g(s) = s^2 - s - 1$$

$$g'(s) = 2s - 1 - 0$$
 Use the power rule we discovered on our calculators: the derivative of x^n is nx^{n-1}

$$g'(s) = 2s - 1$$
 Simplify

Now use the point given: (-1, 1). The s-value (or x-value...the input) is -1. Plug this into g'(s) to get the slope of the tangent line.

$$g'(-1) = 2 * -1 - 1$$

$$g'(-1) = -2 - 1$$

$$g'(-1) = -3$$

This is the slope: -3 we already have a point (-1,1)

So now use Algebra I skills to write the equation of a line

$$y-y_1 = m(x-x_1)$$

$$y - 1 = -3(x + 1)$$

$$y - 1 = -3x - 3$$

$$y = -3x - 2$$

