AP Calculus

Warm up: sketch these graphs into your notes (ignore axes units)

Derivative as a Graph

How to use your TI-84 to find the derivative value (not function)

Example: find the slope of the line tangent to $y=3x(4x-4)^{-3}$

when x=2

$$y = \frac{3x}{(4x-4)^3}$$

 $y' = 2x^2 + 3x$
 $y' = 4x + 3$
 $y' = 4x + 3$
 $y'(3) = 15$

$$\frac{dy}{dx}\Big|_{x=4} COS\left(\frac{3\pi}{a} + X\right)$$

$$\frac{dy}{dx}\Big|_{x=4} \approx -0.654$$

$$\frac{dy}{dx}\Big|_{x=4}$$

Finding the Derivative of Sine

Example:

$$y=2/x - cos(x) + 2$$
 Find y'

Which one doesn't belong? Be prepared to defend your selection

Go-around protocol: one person at a time shares reasoning until all 4 have

spoken.

Which one doesn't belong?

Which one doesn't belong?

Differentiability (Notes)

A function f is differentiable at point c in its domain if

true

- both
 must
 ii) f is continuous at point c
 ii) f has a unique tangent line with a defined slope at point c

f(x) is considered differentiable on an interval if it is differentiable at every point on its interval.

Types of non-differentiable points Cusp Corner Vertical tangents Discontinuities How to tell if a function is differentiable from its graph

Differentiable Function:	
Verbally:	
Graphically:	
Algebraically:	

P.114 # 54-69(x3) #70-77 (Duc Weds)