Mixed Review

505. Suppose that functions f and g and their first derivatives have the following values at x = -1 and at x = 0.

x	f(x)	g(x)	f'(x)	g'(x)
-1	0	-1	2	1
0	-1	-3	-2	4

Evaluate the first derivatives of the following combinations of f and g at the given value of x.

a)
$$3f(x) - g(x)$$
, $x = -1$

d)
$$f(g(x)), x = -1$$

b)
$$[f(x)]^3[g(x)]^3$$
, $x = 0$

e)
$$\frac{f(x)}{g(x)+2}$$
, $x=0$

c)
$$g(f(x)), x = -1$$

$$f) g(x + f(x)), \quad x = 0$$

521 (AP, 2000AB). Consider the curve given by $xy^2 - x^3y = 6$.

- a) Find $\frac{dy}{dx}$.
- b) Find all points on the curve whose x-coordinate is 1, and write an equation for the tangent line at each of these points.
- c) Find the x-coordinate of each point on the curve where the tangent is vertical.

Consider the closed curve in the xy-plane given by

$$x^2 + 2x + y^4 + 4y = 5.$$

- (a) Show that $\frac{dy}{dx} = \frac{-(x+1)}{2(y^3+1)}.$
- (b) Write an equation for the line tangent to the curve at the point (-2, 1).
- (c) Find the coordinates of the two points on the curve where the line tangent to the curve is vertical.
- (d) Is it possible for this curve to have a horizontal tangent at points where it intersects the x-axis? Explain your reasoning.

Consider the curve given by $y^2 = 2 + xy$.

- (a) Show that $\frac{dy}{dx} = \frac{y}{2y x}$.
- (b) Find all points (x, y) on the curve where the line tangent to the curve has slope $\frac{1}{2}$.
- (c) Show that there are no points (x, y) on the curve where the line tangent to the curve is horizontal.

Find $\frac{dy}{dx}$ in simplest factored form.

596.
$$y = 3x \csc 2x$$

601.
$$y = \cos^2 3x - \sin^2 3x$$

606.
$$y = e^{3x} \tan x$$

597.
$$y = \frac{\cot 5x}{3x^2}$$

602.
$$y = e^{\sin x}$$

607.
$$y = e^{1/x^2}$$

598.
$$y = \sqrt{\cot 5x}$$

603.
$$y = 3^{\cos x}$$

608.
$$y = e^{x^2/4}$$

599.
$$y = 3\sin 8x\cos 8x$$

604.
$$y = \log_3(\sin 2x)$$

609.
$$y = \ln(\sec x + \tan x)$$

600.
$$y = \frac{\ln x}{\sin x}$$

605.
$$y = xe^{\ln 3x}$$

610.
$$y = xe^{\tan x}$$

525. Find the volume and surface area of a cube of side length 6.

526. Find the volume and surface area of a box with dimensions 3, 4, and 5.

527. What is the hypotenuse of a right triangle with legs 5 and 12?

528. The area of an isosceles right triangle is 8. What is the length of its hypotenuse?

529. A cylinder is constructed so that its height is exactly 4 times its radius. If the volume of the cylinder is 500π , then what is its radius?

530. In the figure to the right, DE = 2, EC = 5, and AB = 5. Find the lengths of \overline{AC} and \overline{BC} .

531. What is the area of an equilateral triangle if its side lengths are 8?

532. What is the area of a semicircle of radius 10?

533. The trough shown in the figure at the right is 5 feet long and its vertical cross sections are inverted isosceles triangles with base 2 feet and height 3 feet. Find the volume of water in the trough when the trough is full.

534. A cone is constructed so that its height is exactly 4 times its radius. If the volume of the cone is 324π , then what is its radius?

535. A 12-foot ladder is leaning against a wall so that it makes a 60° angle with the ground. How high up the wall does the ladder touch the wall?

536. An equilateral triangle has an area of $4\sqrt{3}$. What is the height of this equilateral triangle?