Good afternoon: attach warm up to notes. no calculator

, A particle moves along the x-axis. The velocity of the particle at time ¢ is 6r — t*. What is the total distance
traveled by the particle fromtime r=0to ¢t =37 f ( L‘_ t)
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What is the area of the region in the first quadrant bounded by the graph of y = ¢*/? and the line x =2?
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FYI. we will continue AP problems ‘jigsaw' on \Wednesday



A particle moves along the x-axis. The velocity of the particle at time 1 is 61 - ¢*. What is the total distance
traveled by the particle from time =010 r=32  ye () _ ye{ b)
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Area under velocity function is
[ 3 distance traveled (assuming positive vel.)
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What is the area of the region in the first quadrant bounded by the graph of y = ¢* /2 and the line x = 2 ?
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Area, Antiderivatives, Slope....guhhh???



Connection hetween Area and Antiderivatives and Slope j .F {f) At

For each function, use geometry to find the area A(x) under the funetion I LJ hetueer —l nd = arbitrary
point x (or, over the interval | 1,x]). Then, jr o A'(x). What do you notice about f(t} uul)l{x)
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Proving the Fundamental Theorem of Calculus



A Visual and Algebraic Proof of The Fundamental Theorem of Caleulus

Let f(x) = f:g(z)dr for the graph of g(t) shown.
Let a=1 Tor stmplicity. Sketch in 3) and fi6) o y=9(t)!
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Let us investigate an “increment” of the area. Namely, the part added on between when
yvou move from a value of x a value of ¢ + Az
Find nse geometry to find

31 the area of the incremental
Y= a(t) “rectangle”
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Since they both describe the same space, items (1) and (2) should be equal. So:

IRIM = F(xtnx)- $(x)
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FTC part 1
If g@) is continuous on [a,b] and f(x) = [ g(t)dt

Y —
Then f'(x) = g(x) derivatives are the inverse
of definite integration
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Some examples:
Sepge (0 - 5 SM i d¢
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