Good afternoon: warm up in notebooks
Find F''(x) for each
$$F(x) = \int_{a}^{x} [t^3 - 3t^2 + 4t - \ln(t)] dt$$

$$F'(x) = 3x^2 - 6x + 4 - \frac{1}{x}$$

$$F(x) = \int_{e}^{x} [t^{3}-3t^{2}+4t-\ln(t)] dt$$

$$F'(x) = 3x^{2}-6x+4-\frac{1}{x}$$

$$F'(x) = 0$$

$$F(x) = \int_{e}^{x} [t^{3}-3t^{2}+4t-\ln(t)] dt$$

$$F(x) = \int_{x}^{x} \operatorname{arcsec}(3t) dt = 0$$

$$F'(x) = 0$$

 $F(x) = \int_{x}^{-2} \frac{2t}{3t-4} dt = -\int_{-3}^{x} \frac{2t}{3t-4} dx$

$$F(x) = \int_{x}^{x} \operatorname{arcsec}(3t) dt = 0$$

$$F(x) = \int_{x}^{x} \frac{2t}{3t-4} dt = -\int_{-2}^{x} \frac{2t}{3t-4} dx$$

$$F'(x) = -\frac{7x}{3x-4} - F'' = -\frac{2(3x+4)-(-2x)(3)}{(3x-4)^{2}}$$

 $\frac{8}{(3x-4)^2} \Leftarrow \frac{-6x+8+6x}{17x-4)^2}$

Revisiting Net Change

Water is pumped into an underground tank at a constant rate of 8 gallons per minute. Water leaks out of the tank at the rate of $\sqrt{t+1}$ gallons per minute, for $0 \le t \le 120$ minutes. At time t=0, the tank contains 30 gallons of water.

- (a) How many gallons of water leak out of the tank from time t = 0 to t = 3 minutes?
- (b) How many gallons of water are in the tank at time t = 3 minutes?
- (c) Write an expression for A(t), the total number of gallons of water in the tank at time t.
- (d) At what time t, for $0 \le t \le 120$, is the amount of water in the tank a maximum? Justify your

Revisiting Net Change

Water is pumped into an underground tank at a constant rate of 8 gallons per minute. Water leaks out of the tank at the rate of $\sqrt{t+1}$ gallons per minute, for $0 \le t \le 120$ minutes. At time t=0, the tank contains 30 gallons of water.

- (a) How many gallons of water leak out of the tank from time t = 0 to t = 3 minutes?
- (b) How many gallons of water are in the tank at time t = 3 minutes?
- (c) Write an expression for A(t), the total number of gallons of water in the tank at time t.
- (d) At what time t, for $0 \le t \le 120$, is the amount of water in the tank a maximum? Justify your

Revisiting Net Change

Water is pumped into an underground tank at a constant rate of 8 gallons per minute. Water leaks out of the tank at the rate of $\sqrt{t+1}$ gallons per minute, for $0 \le t \le 120$ minutes. At time t=0, the tank contains 30 gallons of water.

- How many gallons of water leak out of the tank from time t=0 to t=3 minutes?
- How many gallons of water are in the tank at time t=3 minutes?
- Write an expression for A(t), the total number of gallons of water in the tank at time t.
- At what time t, for $0 \le t \le 120$, is the amount of water in the tank a maximum? Justify your

answer.

C.)
$$A(t) = 30+8t-\int_{0}^{t} \sqrt{\chi+1} d\chi$$

Define Ahs Max

 $E(N) = 8-\sqrt{t+1} = 0$
 $8=\sqrt{t+1}$
 $44=t+1 \Rightarrow t=63$

64=++1=>t=63

$$A(0) = 30$$

$$A(63) = 30 + 8(63) - \int_{0}^{63} \frac{3}{4} + 1 dt$$

$$534 - 340 = \frac{2}{3}(64) - \frac{3}{3}(64) - \frac{3}{3}(64)$$

What was the Mean Value Theorem? Slope:
$$f(b) = f(a)$$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f = \int_{b-a}^{x} \int_{i=1}^{x} f(xi)$$

$$f = \int_{b-a}^{1} \int_{i=1}^{x} f(xi) \Delta x$$
Aug of so many things?
$$\int_{b-a}^{1} \int_{b-a}^{1} \int_{i=1}^{x} f(xi) \Delta x \rightarrow f = \int_{b-a}^{a} \int_{a}^{a} f(x) dx$$
Now have

To find the average value that f takes on over the interval [a,b], $- find \int_{a}^{b} f(x) dx \qquad (Sum of all the y-values)$ - dividu by b-a (Sixt of set)

Mean Value Theorem for Integrals

If g(x) is continuous on [a,b], there exists some c in (a,b) such that

$$g(c) = \frac{1}{b - a} \int_{a}^{b} g(x) dx$$

"a continuous function must take on its average somewhere"

Find the average value of
$$f$$
 over the interval [4,9] where $f = \sqrt{x}$

$$\frac{1}{1-\alpha} \int_{\alpha}^{1} f(x) dx$$

 $\frac{1}{5}(18-\frac{16}{3})\rightarrow \frac{1}{5}(\frac{38}{3})\Rightarrow \frac{38}{15}$

Red stick is the aught of aught blues. Geometric Interpretation - Area of this
Rest = f(c). (bo) $= \int_{a}^{b} f(x) dx$

What's on Monday's assessment?? NEW

I-A4b: Area between Curves

I-A7a: Average Value I-A7b: Net Change Theorem OLD

I-U7: Prop of Definite Integrals

I-A1: Basic Antiderivatives

I-U3c: Riemann Sum from Table

I-U3a: LRAM, RRAM

I-U4: FTC Algebraically

Skills only assessed once this quarter?

I-A2b: U-Sub

I-U1: Riemann Definition

I-U3b: MRAM, TRAP I-A4a Area under curve

I-U2: Sum as Integral, vice versa

I-U9: FTC Graphically