Good afternoon: warm up in notes
$$3\pi$$

$$\int_{-\frac{3\pi}{2}}^{\frac{3\pi}{2}} \sin x \, dx = -\cos(3\pi/2)$$

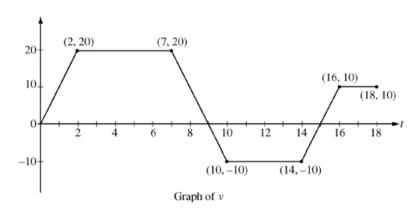
$$-\cos(3\pi/2) - -\cos(-3\pi/2)$$
reminder: assessment is Friday
$$-\cos(3\pi/2) - \cos(-3\pi/2)$$

Visibly Random Grouping

HW answers...aren't needed! just check with a calculator

Questions on any in particular?

Questions on any in particular?


18)
$$\int_{1}^{8} \sqrt{\frac{1}{x}} \, dx \Rightarrow \int_{1}^{8} \sqrt{\frac{1}{x}} \, dx \Rightarrow \sqrt{2} \int_{1}^{8} \sqrt{\frac{1}{x}} \, dx$$

$$\sqrt{2} \left[2 \times \frac{1}{x} \right]_{1}^{8} \leftarrow \sqrt{2} \int_{1}^{8} \sqrt{\frac{1}{x}} \, dx$$

$$\sqrt{2} \left[2 \times \frac{1}{x} \right]_{1}^{8} \leftarrow \sqrt{2} \int_{1}^{8} \sqrt{\frac{1}{x}} \, dx$$

$$\sqrt{2} \left[2 \times \frac{1}{x} \right]_{1}^{8} \leftarrow \sqrt{2} \int_{1}^{8} \sqrt{\frac{1}{x}} \, dx$$

$$\sqrt{2} \left[2 \times \frac{1}{x} \right]_{1}^{8} \leftarrow \sqrt{2} \int_{1}^{8} \sqrt{\frac{1}{x}} \, dx$$

A squirrel starts at building A at time t = 0 and travels along a straight, horizontal wire connected to building B. For $0 \le t \le 18$, the squirrel's velocity is modeled by the piecewise-linear function defined by the graph above.

- (a) At what times in the interval 0 < t < 18, if any, does the squirrel change direction? Give a reason for your answer.
- (b) At what time in the interval $0 \le t \le 18$ is the squirrel farthest from building A? How far from building A is the squirrel at that time?
- (c) Find the total distance the squirrel travels during the time interval $0 \le t \le 18$.
- (d) Write expressions for the squirrel's acceleration a(t), velocity v(t), and distance x(t) from building A that are valid for the time interval 7 < t < 10.

2010b BC4 no calc

(a) At what times in the interval 0 < t < 18, if any, does the squirrel change direction? Give a reason for your answer. $(2,20) \qquad (7,20) \qquad (16,10) \qquad (18,10)$

16

Graph of vOf t = 9, t = 15

V(t) changes 5ight

-10-

(b) At what time in the interval
$$0 \le t \le 18$$
 is the squirrel farthest from building A ? How far from building A is the squirrel at that time?

$$(2,20) \qquad (7,20) \qquad (16,10) \qquad (18,10) \qquad (18,10) \qquad (18,10) \qquad (19,10) \qquad$$

$$first = 9 \cdot \frac{10 \cdot 12 \cdot 14 \cdot 16 \cdot 18}{10 \cdot 12 \cdot 14 \cdot 16 \cdot 18} first = \frac{10 \cdot 10 \cdot 10}{10 \cdot 10 \cdot 10} first = \frac{10 \cdot 10 \cdot 10}{10 \cdot 10 \cdot 10} first = \frac{10 \cdot 10 \cdot 10}{10 \cdot 10 \cdot 10} first = \frac{10 \cdot 10 \cdot 10}{10 \cdot 10 \cdot 10} first = \frac{10 \cdot 10 \cdot 10}{10 \cdot 10 \cdot 10} first = \frac{10 \cdot 10 \cdot 10}{10 \cdot 10 \cdot 10} first = \frac{10 \cdot 10 \cdot 10}{10 \cdot 10 \cdot 10} first = \frac{10 \cdot 10 \cdot 10}{10 \cdot 10 \cdot 10} first = \frac{10 \cdot 10}{10 \cdot 10$$

5.) Qt=9.

$$7?? do \lambda = hake x(t)$$
.

 $f''(t)dt = x(q) - x(o)$

Areal.

 $f''=\frac{1}{2}(5+q)(2o)$
 $7\cdot 20 = 140$

(c) Find the total distance the squirrel travels during the time interval $0 \le t \le 18$.

$$A = \frac{1}{2} \left(\frac{4+6}{10} \right)$$
(10, -10) (14, -10)
$$A = \frac{1}{2} \left(\frac{4+6}{10} \right)$$
(5) (10)

$$14.450 + 25 = 215$$

(d) Write expressions for the squirrel's acceleration
$$a(t)$$
, velocity $v(t)$, and distance $x(t)$ from building A that are valid for the time interval $7 < t < 10$.

$$\frac{10}{10} = \frac{10}{20} = \frac{$$

X(t) 7 next 19e.

 $\chi(t) = ?$ Sv(+)d+ > S-10++90d+ $-x(t) = -5t^2 + 90t + C$ o Find C... Need a fixed point in [7,10]. OH! Part b! et=9, my dude Waveled 14011 (x(9) = 140 x(9)=140=-5(9)2+90(9)+C 190: -5(81) +10(81) +5 140 = 5(81) +C 140-5(FI) = C -265 = 6x(t) = -5t2+70t-265