Good afternoon: when the bell rings, we will randomize and look over a ff disparate topics we've covered in the last few weeks in preparation for the assessment Monday.

You will have time in class to work on the practice :)

Find intersection points
Enter functions into y1 and y2
Graph (adjust zoom if needed), then 2nd, TRACE, INTERSECT
move cursor to point you want, hit enter 3 times

$$
2005 \mathrm{AB} 1
$$

calc ok

Function variables Hit VARS, then Y-vars menu, then 1 or
ALPHA then TRACE

Let f and g be the functions given by $f(x)=\frac{1}{4}+\sin (\pi x)$ and $g(x)=4^{-x}$. Let R be the shaded region in
the first quadrant enclosed by the y-axis and the graphs of f and g, and let S be the shaded region in the first quadrant enclosed by the y-axis and the graphs of f and g, and let S
quadrant enclosed by the graphs of f and g, as shown in the figure above. (a) Find the area of R.

$$
R=\int_{0}^{178} g(x)-f(x) d x \rightarrow
$$

$$
S=\int_{178}^{1} f(x)-\delta(x) d x=
$$

$$
\begin{aligned}
& \text { math } 9 \\
& \int_{0}^{178} y_{2}-x_{1} d x \rightarrow
\end{aligned} \rightarrow 064
$$

$$
\left\lceil\int_{.178}^{1} y_{1}-y_{2} d x\right] \rightarrow 0.410
$$

$$
\text { formula: } \frac{1}{b-a} \underbrace{\int_{a}^{b u m o f ~ t h e ~}}_{\text {"Al of }} \underset{\text { values }}{b} f(x) d x
$$

Find the average value of $y=x^{3}$ on the interval $[2,8]$.

$$
\begin{array}{ll}
\frac{1}{8-2} \int_{2}^{8} x^{3} d x \\
\frac{1}{6}\left[\frac{1}{4} x^{4}\right]_{2}^{8} & \frac{170}{\frac{170}{510}} \\
\frac{1}{6}\left[\frac{1}{4}(8)^{4}-\frac{1}{4}(2)^{4}\right] & \frac{-3}{21} \\
\frac{1}{6}[1024-4] \\
\frac{1}{6}[1020] \\
\frac{1020}{6} \rightarrow \frac{510}{3}=170
\end{array}
$$

Interpreting Average Value + Net Change
On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by $G(t)=90+45 \cos \left(\frac{t^{2}}{18}\right)$, where t is measured in hours and $0 \leq t \leq 8$. At the beginning of the
workday $(t=0)$, the plant has 500 tons of unprocessed gravel. During the hours of operation, $0 \leq t \leq 8$, the plant processes gravel at a constant rate of 100 tons per hour.
a. Using correct units, explain the meaning of $\frac{1}{5} \int_{2}^{7} G(t) d t$. Then find its value.
b. How much unprocessed gravel is at the plant at the end of the work day $(t=8)$?
a.) This represents the average rate at which gravel arrives in tons per hour from $t=2$ to $t=7$.
via $m a+h-9 \rightarrow 101.940$ tons per hour
b.) $A(t)=500+\int_{0}^{t} 90+45 \cos \left(\frac{x^{2}}{18}\right) d x-100 t$

Initial amt. Accumulation of arrivals. minus processed amt

$$
\begin{array}{r}
A(8)=500+\int_{0}^{8} 90+45 \cos \left(\frac{x}{18}\right) d x-100(8) \\
\downarrow \operatorname{math} 9
\end{array}
$$

2014AB4 no calc
Train A runs back and forth on an east-west section of railroad track. Train A 's velocity, measured in meters per minute, is given by a differentiable function $v_{A}(t)$, where time t is measured in minutes. Selected values for $v_{A}(t)$ are given in the table above.

Trapezoid Rule from a Table + Net Change

(c) At time $t=2$, train A 's position $=300$ t

Write an expression involving an integral that gives the position of train A, in meters from the Origin Station time $t=12$. Use a trapezoidal sum with three subintervals indicated by the table to approximate the position of the train at time $t=12$.

$$
A(12)=A(2)+\underbrace{\int_{2}^{12} v(t) d t}_{\text {displacement }}
$$

$$
300+\frac{1}{2}(100+40)(3)+\frac{1}{2}(40+120)(3)+\frac{1}{2}(-120+-150) \varphi
$$

$$
300+\frac{1}{2}(140)(3)+\frac{1}{2}(-80)(3)+\frac{1}{2}(-270) 4
$$

$$
300+(70)(3)-(40)(3)-2(270)
$$

$$
3001-210-120-540
$$

$$
\begin{aligned}
& 01-210-120-540 \\
& 510-120-540 \Rightarrow 490-540=-150
\end{aligned}
$$

150 m west

HW

do the practice assessment, study solutions, study help videos
need extra practice?
problems in book

> I-A4b area between curves: p. 442 : much of the page is good
> I-U7 prop of definite integrals: p. 274 \#41-44
> I-U4: FTC algebra: p. $29081-92$
> I-U9: FTC graphically: p. $29073-74$; p. $274 \# 47-48$
> I-A7b: Net Change: p. 291 \#103-104
> I-A7a: Average Value:p. $288: \# 51-55$
> I-U3a: LRAM/RRAM: p. 263 \#33-36
> I-U3c: Riemann Sum from Table: p. $274 \# 45-46$
> I-A1a: Basic Antiderivatives: p. $312 \# 1-8$

