NO CALCULATORS

The student should be able to...
...write a piecewise function from a rational function that includes an absolute value; then find its one-sided limits
see pg
...evaluate limits (finite and infinite) and discuss continuity from a See website "generic graph" (See "Limits: A Graphical Approach" worksheet)
...evaluate limits (both existant and one-sided) of all the function families Tips:

- be able to mentally "picture" the graph made by each type)
- "massage the limit" to reveal cancellations (removable discontinuities) two tips for massages: factor the denominator; also rational the numerator
- Use properties of limits: p57 table
- ...justifiably find asymptotes of functions using the limit definitions. See be low
- ...demonstrate Continuity at a point using the three conditions necessary
- ...explain, with evidence, why a given function has a zero (that is, $\mathrm{f}(\mathrm{c})=0$, for some c in (a, b)) for a continuous function
...given either a function (perhaps piecewise) or a graph of a function, identify with justification the types of discontinuities present. (Jump, removable, infinite) see below
...sketch a possible graph for a function given certain requirements (expressed as limits)
ex: Graph a possible graph or the function $P(x)$ satisfying the following conditions:

$$
\lim _{x \rightarrow \infty} P(x)=-2 \lim _{x \rightarrow \infty} P(x)=5 \quad \lim _{x \rightarrow 0^{+}} P(x)=-\infty \quad \lim _{x \rightarrow 0^{-}} P(x)=-6
$$

$$
f(x)= \begin{cases}x & , x \leq-2 \\ -x^{2}-2 x & x>-2\end{cases}
$$

$$
\rightarrow \lim _{x+2^{-}} f(x)=\operatorname{li}_{x \rightarrow-2} x=-2
$$

$$
\Rightarrow \lim _{x \rightarrow 2^{+}}^{x-} \cdot f(x)=\operatorname{lic}_{x \rightarrow 2^{+}}-x^{2}-2 x=-4+4=0
$$

...solve a system of equations to find a and b to make a given piecewise function continuous over the entire real line:
ex: Find a and b to make $f(x)$ everywhere continuous.

$$
f(x)=\left\{\begin{array}{l}
5 b x-6 a, \text { if } x<-2 \\
-3 b-4 a x, \text { if } x=-2 \\
5 x-1, \text { if } x>-2
\end{array}\right.
$$

Continuity $@ x=-2$

$$
\begin{aligned}
& \varliminf_{x \rightarrow 2^{-}} f(x)=\operatorname{l}_{x \rightarrow-2^{+}} f(x)=f(2) \\
& \lim _{x \rightarrow-2^{-}} 5 b x-6 a=\ell_{x \rightarrow-2^{+}} 5 x-1=-3 b-4 a(-2) \\
& -10 b-6 a=-11=-3 b+8 a \\
& \left\{\begin{array}{l}
(-10 b-6 a=-11)^{4} \\
(-3 b+8 a=-11) 3
\end{array} \quad \longrightarrow-3\left(\frac{11}{7}\right)+8 a=-11\right) \\
& \begin{aligned}
\left\{\begin{array}{l}
-40 b-24 a \\
-9 b+24 a
\end{array}=-34\right. \\
\frac{-49 b}{-4} \frac{-77}{-49}
\end{aligned} \\
& \frac{-33}{7}+8 a=\frac{-77}{7} \\
& \frac{1}{8}\left(8 a=\frac{-44}{7}\right) \frac{1}{8} \\
& \begin{array}{l}
a=\frac{-44}{56} \begin{array}{l}
14 \\
a=-11 / 4
\end{array} \sqrt{146} \text {-id }
\end{array}
\end{aligned}
$$

Rewrite as a P-wise and find $\lim _{x \rightarrow 4} g(x)$

$$
g(x)=\frac{3|x+4|}{-x-4}
$$

When is the absilute value pusitive?

$$
x+4>0
$$

$$
x>-4
$$

Now we kniw our prise conditions

$$
\begin{aligned}
& g(x)=\left\{\begin{array}{cc}
\text { abs.val } & x<-4 \\
\text { is neeg. } & x<-4 \\
\text { abss.val } \\
\text { is poritice } & x>-4
\end{array}\right. \\
& = \begin{cases}\frac{(3)-1)(x+4)}{}, & , x<-4 \\
\frac{3(x+4)}{-x-4}, & , x>-4\end{cases} \\
& \lim _{x \rightarrow-4^{-}} g(x) \\
& \lim _{x \rightarrow-4-} 3=3
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}}^{\# 1} \frac{3}{x^{2}-6 x+9}=\lim _{x \rightarrow 3^{-}} \frac{3}{(x-3)(x-3)}=\frac{3}{\left(3^{-3}-3\right)\left(3^{3}-5\right)} \\
& =\frac{3}{\left(0^{-}\right)\left(0^{-}\right)} \\
& \lim _{x \rightarrow 0} 3 x+2+x^{-2} \\
& \rightarrow 0_{x \rightarrow 0} 3 x+2+\frac{3}{0^{+}}=\infty \\
& 3(0)+2+\frac{1}{0^{2}} \\
& \lim _{x \rightarrow 0} \frac{2+\frac{1}{0^{+}}=\infty}{x+9-3}=\frac{0}{x}=0
\end{aligned}
$$

Rationalize the num.

$$
\frac{\sqrt{x+9}-3}{x} \cdot \frac{\sqrt{x+9}+3}{\sqrt{x+9}+3}
$$

$$
\begin{aligned}
& \frac{x+9-9}{x(\sqrt{x+a}+3)} \\
& {\underset{x}{x(\sqrt{x+9}+3})}_{x}^{x} \frac{1}{\sqrt{x+9}+3} \\
& \lim _{x \rightarrow 8} \frac{1}{\sqrt{x+9}+3}=\frac{1}{\sqrt{+9}+3} \\
& =\frac{1}{\sqrt{a+3}} \\
& \text { - } 1 / 6
\end{aligned}
$$

given:

$$
\begin{aligned}
& \text { en: } \lim _{x \rightarrow c^{-}} f(x)=-2 / 3 \\
& \lim _{x+c^{+}} f(x)=-2 / 3 \\
& \lim _{x \rightarrow c} g(x)=1 / 5
\end{aligned}
$$

a.) find $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$
b.) Find $\lim _{x \rightarrow 2} f(x) \cdot g(x)$
a) $\begin{aligned} \lim _{x \rightarrow r} & \frac{f(x)}{g(x)}=\frac{\operatorname{lin}(x)}{\operatorname{lin}_{x \rightarrow i} g(x)}\end{aligned}=\frac{-2 / 3}{1 / 5}=\frac{-2}{3} . \frac{5}{1} 85$

$$
=-30 / 3
$$

$$
\begin{aligned}
& \text { b. } \lim _{x \rightarrow c} f(x) \cdot g(x)=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x) \\
& \quad-\frac{2}{3} \cdot \frac{1}{5}=-2 / 15 \\
& \lim _{x \rightarrow \infty} \frac{3 x^{3}-9 x^{2}+5 x}{12 x^{3}-9 x^{2}+5 x^{7}} \\
& \lim _{x \rightarrow \infty} \frac{\frac{3 x^{3}-9 x^{2}+5 x}{5 x^{7}+12 x^{3}-4 x^{2}}}{} \frac{\infty^{3}}{\infty 7} \Rightarrow 0 \\
& \lim _{x \rightarrow-3 / 4} \frac{-5+4 x}{3+4 x}=\frac{-5+4(-3 / 4)}{3+4(-3 / 4)}=\frac{-5-3}{3+3^{-}}=\frac{-8}{3-3}=\frac{-8}{0^{+}}
\end{aligned}
$$

Demonstrate why

$$
f(x)=3 x^{2}-2 x-6
$$

has a root in the interval $[1,2]$.
I.U.T.

- f is continuous b/c it's a p-lynimicl.
- $f(2)=12-4-6=2$
- $f(1)=3-2-6=1-6=-5$
- $f(2) \neq f(1)$

So I.V.T. Says, there exists some c in $[1,2]$ Such that $f(c)=0$ because 0 is in the interval $[f(1), f(2)]$ or $[-5,2]$.

A root is where $f(x)=0$, so C is a root.

