1.17 Have You Reached the Limit?

304. Estimate the value of lim_{x→∞} (√x² + x + 1 - x) by graphing or by making a table of values.
305. Estimate the value of lim_{x→∞} (√x² + x - √x² - x) by graphing or by making a table of values.

- **306.** Consider the function $f(x) = \begin{cases} x^2 1 & -1 \le x < 0\\ 2x & 0 < x < 1\\ 1 & x = 1\\ -2x + 4 & 1 < x < 2\\ 0 & 2 < x < 3. \end{cases}$
 - a) Graph this function.
 - b) Does f(-1) exist?
 - c) Does $\lim_{x \to -1^+} f(x)$ exist?
 - d) Does $\lim_{x \to -1^+} f(x) = f(-1)$?
 - e) Is f continuous at x = -1?
 - f) Does f(1) exist?
 - g) Does $\lim_{x \to 1^+} f(x)$ exist?

h) Does
$$\lim_{x \to 1^+} f(x) = f(1)$$
?

i) Is f continuous at x = 1?

- j) Is f defined at x = 2?
- k) Is f continuous at x = 2?
- 1) At what values of x is f continuous?
- m) What value should be assigned to f(2) to make the function continuous at x = 2?
- n) To what new value of f(1) be changed to remove the discontinuity?

307. Is
$$F(x) = \frac{|x^2 - 4|x|}{x + 2}$$
 continuous everywhere? Why or why not?

308. Is $F(x) = \frac{|x^2 + 4x|(x+2)|}{x+4}$ continuous everywhere? Why or why not?

FIND THE CONSTANTS a AND b SUCH THAT THE FUNCTION IS CONTINUOUS EVERYWHERE.

309.
$$f(x) = \begin{cases} x^3 & x \le 2\\ ax^2 & x > 2 \end{cases}$$
310.
$$g(x) = \begin{cases} \frac{4\sin x}{x} & x < 0\\ a - 2x & x \ge 0 \end{cases}$$
311.
$$f(x) = \begin{cases} 2 & x \le -1\\ ax + b & -1 < x < 3\\ -2 & x \ge 3 \end{cases}$$
312.
$$g(x) = \begin{cases} \frac{x^2 - a^2}{x - a} & x \ne a\\ 8 & x = a \end{cases}$$

313. $\lim_{x \to \infty} \frac{3x^4}{7x}$	$\frac{-2x+1}{-8x^5-1} =$			
A) ∞	B) $-\infty$	C) 0	D) $\frac{3}{7}$	E) $-\frac{3}{8}$
314. $\lim_{x \to 0^-} \frac{1}{x} =$				
A) ∞	B) $-\infty$	C) 0	D) 1	E) does not exist
315. $\lim_{x \to 1/3} \frac{9x^2}{3x}$	$\frac{1}{-1} =$			
A) ∞	B) $-\infty$	C) 0	D) 2	E) 3
316. $\lim_{x \to 0} \frac{x^3 - x^3}{x^2 - x^2}$	$\frac{8}{4} =$			
A) 4	B) 0	C) 1	D) 3	E) 2

1.18 Multiple Choice Questions on Limits

317. In order for the line y = a to be a horizontal asymptote of h(x), which of the following must be true?

- A) $\lim_{x \to a^+} h(x) = \infty$
- B) $\lim_{x \to a^-} h(x) = -\infty$
- C) $\lim_{x \to \infty} h(x) = \infty$

D)
$$\lim_{x \to -\infty} h(x) = a$$

E)
$$\lim_{x \to -\infty} h(x) = \infty$$

318. The function $G(x) = \begin{cases} x-3 & x>2\\ -5 & x=2 \text{ is not continuous at } x=2 \text{ because}\\ 3x-7 & x<2 \end{cases}$

- A) G(2) is not defined
- B) $\lim_{x \to 2} G(x)$ does not exist C) $\lim_{x \to 2} G(x) \neq G(2)$ D) $G(2) \neq -5$
- E) All of the above

319.
$$\lim_{x \to 0} \frac{3x^2 + 2x}{2x + 1} =$$

A) ∞ B) $-\infty$ C) 0 D) 1 E) $\frac{3}{2}$