Reverse Chain Rule for Antiderivatives

Review J(x+1) dx dr x3 dx J dx S x+1)2 dx C 3(x+1)2.1 (XH)2

CHain Rule $\int (x+1)^{qq} dx \sum \int (2x+5)^{qq} dx$ Reverse $\frac{1}{00}(\chi+1)^{100}+C) = \frac{1}{100}(\chi+1)^{100}+\frac{1}{100}(\chi+1)^{100}=\frac{1}{2}$ Ax+5)⁰⁰
(2x+5)¹
200
(2x+5)¹
 (2x+5)¹
00) + C 1 100 (X+1)⁹⁷ (X+1)⁹⁷ 3 (2xts) $\frac{1}{3}\int_{0}^{1} 2\chi^{5}(\chi^{6}+1) d\chi$ $\int x^{3} dx \left(\int x^{n} \right) \\ = \frac{1}{4} x^{n} + \left(\int \frac{1}{n} \right) x^{n}$ $\int 6x^{s}(x^{t}+1)^{3} dx$ $\frac{1}{4}(x^{6}+1)^{7}$

9) $3 \int \frac{1}{3} (x^3 - 3)^{4} \cdot 9x^{2} dx \int \frac{10}{3} \int \frac{1}{3} \frac{1}{3$ $\chi \left\{ \frac{3}{3} \right\} \left\{ \frac{16x^3}{4x^4 - 3} \right\} d\chi$ $3x^{2}(x^{3}-3)^{4}$ $(\frac{5}{3}-3)^{5}+c$ $(x^3-3)^{5}+C$ (4-3)

 $\frac{1}{3}\int_{0}^{1}2\chi^{5}(\chi^{6}+1) d\chi$ $\int x^{3} dx \left(\int x^{n} \right) x^{n} dx = \int \frac{1}{m} x^{n} dx$ 6x (x + 1) dx $\frac{1}{4}(x^{6}+1)^{4}$ 6+1)

Rational Functions: Review: derivative of $\ln(x) = 1/x$ So $\int \frac{1}{x} dx = \ln(x) + C$

But since ln cannot take in negative values, and 1/x can take negative values, we use an absolute value for the natural log part. So really it is:

 $\frac{e^{x}}{dx}\frac{d}{dx}3x^{2}$ $\frac{3}{dx}\frac{d}{dx}x^{2}$ $3\cdot \partial x = 6x$

Final answer: $-\frac{1}{2}\ln|x^3-5|+C$