$$
\begin{aligned}
& \text { ct/ } 99 \text { Reverse CHain Rule }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{100}(x+1)^{100}+C \\
\frac{1}{101 / 2 x} 100(x+1)^{94} \\
(x+1)^{99}
\end{array}\left\{\begin{array}{l}
\frac{1}{100}(2 x+5)^{100} \cdot \frac{1}{2} \\
\frac{1}{200}(2 x+5)^{100}+C \\
\frac{1}{2000}(2 x+5)^{49} \cdot 2 \\
\frac{1}{2}(2 x+5)^{9 / 2}
\end{array}\right. \\
& \text { ex/ } \frac{1}{3} \iint_{6 x^{5}} 2 x^{5}\left(x^{6}+1\right)^{3} d x \\
& \frac{1}{3} \iint^{6 x^{5}}\left(x^{6}+1\right)^{3} d x \\
& \begin{array}{l}
\int x^{3} d x=\left[\begin{array}{l}
\int x^{n} d x \\
\frac{1}{4} x^{4}+C x^{n+1}
\end{array}\right.
\end{array} \\
& \begin{array}{l}
\frac{1}{3} \cdot \frac{1}{4}\left(x^{6}+1\right)^{4} \\
\frac{1}{12}\left(x^{6}+1\right)^{4}+6
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ex } \frac{1}{3} \int 32 x^{5}\left(x^{6}+1\right)^{3} d x \\
& \frac{1}{3} \iint^{6 x^{5}}\left(x^{6}+1\right)^{3} d x \\
& \begin{array}{l}
\int x^{3} d x=\left\{\begin{array}{l}
\int x^{n} d x \\
\frac{1}{4} x^{n}+C=\frac{1}{n+1} x^{n \prime 1}
\end{array} .\right.
\end{array} \\
& \begin{array}{l}
\frac{1}{3} \cdot \frac{1}{4}\left(x^{6}+1\right)^{4} \\
\frac{1}{12}\left(x^{6}+1\right)^{4}+6
\end{array}
\end{aligned}
$$

Rational Functions:
Review: derivative of $\ln (\mathrm{x})=1 / \mathrm{x}$
So $\int \frac{1}{x} d x=\ln (x)+C$
But since $\ln$ cannot take in negative values, and $1 / \mathrm{x}$ can take negative values, we use an absolute value for the natural log part. So really it is:

$$
\int \frac{1}{x} d x=\ln |x|+C
$$


c) $\frac{3}{2} \Rightarrow 3 \cdot \frac{1}{2}$

Final answer: $3 \ln \left|x^{5}-2\right|+C$


$$
3 \cdot 2 x=6 x
$$

Final answer: $-\frac{1}{2} \ln \left|x^{3}-5\right|+C$

