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Connecting f 	 and f � with the Graph of f

First Derivative Test for Local Extrema
As we see once again in Figure 4.18, a function f may have local extrema at some critical
points while failing to have local extrema at others. The key is the sign of f 	 in a critical
point’s immediate vicinity. As x moves from left to right, the values of f increase where
f 	 � 0 and decrease where f 	� 0.

At the points where f has a minimum value, we see that f 	� 0 on the interval immedi-
ately to the left and f 	 � 0 on the interval immediately to the right. (If the point is an end-
point, there is only the interval on the appropriate side to consider.) This means that the
curve is falling (values decreasing) on the left of the minimum value and rising (values in-
creasing) on its right. Similarly, at the points where f has a maximum value, f 	 � 0 on the
interval immediately to the left and f 	� 0 on the interval immediately to the right. This
means that the curve is rising (values increasing) on the left of the maximum value and
falling (values decreasing) on its right.

4.3

What you’ll learn about

• First Derivative Test for Local
Extrema

• Concavity  

• Points of Inflection

• Second Derivative Test for Local
Extrema

• Learning about Functions from
Derivatives

. . . and why 

Differential calculus is a powerful
problem-solving tool precisely 
because of its usefulness for ana-
lyzing functions.

Figure 4.18 A function’s first derivative tells how the graph rises and falls.
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THEOREM 4   First Derivative Test for Local Extrema

The following test applies to a continuous function f �x�.

At a critical point c:
1. If f 	 changes sign from positive to negative at c � f 	 � 0 for x � c and f 	� 0 for

x � c�, then f has a local maximum value at c.

continued
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local max
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f ' � 0 f ' � 0

c

local max

(b)  f '(c) undefined

f ' � 0
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206 Chapter 4 Applications of Derivatives

Here is how we apply the First Derivative Test to find the local extrema of a function. The
critical points of a function f partition the x-axis into intervals on which f 	 is either positive
or negative. We determine the sign of f 	 in each interval by evaluating f 	 for one value of x in
the interval. Then we apply Theorem 4 as shown in Examples 1 and 2.

EXAMPLE 1 Using the First Derivative Test

For each of the following functions, use the First Derivative Test to find the local ex-
treme values. Identify any absolute extrema. 

(a) f (x) � x3 � 12x � 5 (b) g(x) � (x2 � 3)ex

continued

2. If f 	 changes sign from negative to positive at c � f 	� 0 for x � c and f 	 � 0 for
x � c�, then f has a local minimum value at c.

3. If  f 	 does not change sign at c � f 	 has the same sign on both sides of c�, then f
has no local extreme value at c.

At a left endpoint a:
If f 	� 0 ( f 	 � 0)  for  x � a, then f has a local maximum (minimum) value at a.

At a right endpoint b:
If f 	� 0 ( f 	 � 0)  for  x � b, then f has a local minimum (maximum) value at b.

f ' � 0f ' � 0f ' � 0

c
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f ' � 0
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(b)  f '(c) undefined

f ' � 0

c
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(a)  f '(c) � 0

f ' � 0
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(b)  f '(c) undefined

f ' � 0

no extreme

f ' � 0

f ' � 0
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Section 4.3 Connecting f ′ and f″ with the Graph of f 207

SOLUTION   

(a) Since f is differentiable for all real numbers, the only possible critical points are the
zeros of f	. Solving f	(x) � 3x2 � 12 � 0, we find the zeros to be x � 2 and x � �2. The
zeros partition the x-axis into three intervals, as shown below:

Figure 4.19 The graph of
f �x� � x3 � 12x � 5.

Figure 4.20 The graph of
g�x� � �x2 � 3�ex. 

[–5, 5] by [–25, 25]

[–5, 5] by [–8, 5]

Using the First Derivative Test, we can see from the sign of f	 on each interval that there is
a local maximum at x � �2 and a local minimum at x � 2. The local maximum value is
f (�2) � 11, and the local minimum value is f(2) � �21. There are no absolute extrema,
as the function has range (��, �) (Figure 4.19).

(b) Since g is differentiable for all real numbers, the only possible critical points are the
zeros of g	. Since g	(x) � (x2 � 3) • ex � (2x) • ex � (x2 � 2x � 3) • ex, we find the zeros
of g	 to be x � 1 and x � �3. The zeros partition the x-axis into three intervals, as shown
below:

Figure 4.21 The graph of y � x3 is 
concave down on ���, 0� and concave up
on �0, ��.

y' decreases
y' increases
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If a function y � f �x� has a second derivative, then we can conclude that y	 increases if
y� � 0 and y	 decreases if y� � 0.

DEFINITION   Concavity

The graph of a differentiable function  y � f (x)  is 

(a) concave up on an open interval I if y	 is increasing on I.

(b) concave down on an open interval I if y	 is decreasing on I.

Using the First Derivative Test, we can see from the sign of f	 on each interval that there is
a local maximum at x � �3 and a local minimum at x � 1. The local maximum value is
g(�3) � 6e�3 � 0.299, and the local minimum value is g(1) � �2e � �5.437. Although
this function has the same increasing–decreasing–increasing pattern as f, its left end
behavior is quite different. We see that limx→�� g(x) � 0, so the graph approaches the
y-axis asymptotically and is therefore bounded below. This makes g(1) an absolute
minimum. Since  limx→� g(x) � �, there is no absolute maximum (Figure 4.20).

Now try Exercise 3.

Concavity
As you can see in Figure 4.21, the function y � x3 rises as x increases, but the portions de-
fined on the intervals ���, 0� and �0, �� turn in different ways. Looking at tangents as we
scan from left to right, we see that the slope y	 of the curve decreases on the interval ���,
0� and then increases on the interval �0, ��. The curve y � x3 is concave down on ���, 0�
and concave up on �0, ��. The curve lies below the tangents where it is concave down, and
above the tangents where it is concave up.
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208 Chapter 4 Applications of Derivatives

EXAMPLE 2 Determining Concavity
Use the Concavity Test to determine the concavity of the given functions on the given
intervals:

(a) y � x2 on (3, 10)               (b) y � 3 � sin x on (0, 2p)

SOLUTION

(a) Since y� � 2 is always positive, the graph of y � x2 is concave up on any interval.
In particular, it is concave up on (3, 10) (Figure 4.22).

(b) The graph of y � 3 � sin x is concave down on (0, p), where y� � �sin x is 
negative. It is concave up on (p , 2p), where y� � �sin x is positive (Figure 4.23).

Now try Exercise 7.

Figure 4.22 The graph of y � x2 is con-
cave up on any interval. (Example 2)
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Figure 4.23 Using the graph of y� to
determine the concavity of y. (Example 2)

[0, 2p] by [–2, 5]

y y � � � 3   � sin x, sin x21

Points of Inflection
The curve y � 3 � sin x in Example 2 changes concavity at the point �p, 3�. We call 
�p, 3� a point of inflection of the curve.

Figure 4.24 Graphical confirmation that
the graph of y � e�x2

has a point of inflec-
tion at x � �1/2� (and hence also at x �
��1/2� ). (Example 3)

X=.70710678 Y=.60653066

1

[–2, 2] by [–1, 2]

DEFINITION Point of Inflection

A point where the graph of a function has a tangent line and where the concavity
changes is a point of inflection.

A point on a curve where y� is positive on one side and negative on the other is a point
of inflection. At such a point, y� is either zero (because derivatives have the intermediate
value property) or undefined. If y is a twice differentiable function, y� � 0 at a point of in-
flection and y	 has a local maximum or minimum.

EXAMPLE 3 Finding Points of Inflection

Find all points of inflection of the graph of y � e�x2
.

SOLUTION

First we find the second derivative, recalling the Chain and Product Rules:

y � e�x2

y	 � e�x2
• (�2x)

y� � e�x2
• (�2x) • (�2x) � e�x2

• (�2)

� e�x2
(4x2 � 2)

The factor e�x2

is always positive, while the factor (4x2 � 2) changes sign at ��1/2� and
at �1/2�. Since y� must also change sign at these two numbers, the points of inflection
are (��1/2�, 1/�e�)  and (�1/2�, 1/�e�). We confirm our solution graphically by observ-
ing the changes of curvature in Figure 4.24.

Now try Exercise 13.

Concavity Test

The graph of a twice-differentiable function  y � f (x)  is

(a) concave up on any interval where  y� � 0.

(b) concave down on any interval where  y� � 0.
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Section 4.3 Connecting f ′ and f″ with the Graph of f 209

EXAMPLE 4 Reading the Graph of the Derivative

The graph of the derivative of a function f on the interval [�4, 4]  is shown in Figure 4.25.
Answer the following questions about f, justifying each answer with information obtained
from the graph of  f 	.

(a) On what intervals is f increasing? 

(b) On what intervals is the graph of f concave up?

(c) At which x-coordinates does f have local extrema?

(d) What are the x-coordinates of all inflection points of the graph of f ?

(e) Sketch a possible graph of f on the interval [�4, 4]. 

SOLUTION

(a) Since  f	 � 0 on the intervals [�4, �2) and (�2, 1), the function f must be increasing
on the entire interval [�4, 1] with a horizontal tangent at x � �2 (a “shelf point”). 

(b) The graph of f is concave up on the intervals where f	 is increasing. We see from the
graph that f	 is increasing on the intervals (�2, 0) and (3, 4).

(c) By the First Derivative Test, there is a local maximum at x � 1 because the sign of f	
changes from positive to negative there. Note that there is no extremum at x � �2, since
f	 does not change sign. Because the function increases from the left endpoint and de-
creases to the right endpoint, there are local minima at the endpoints x � �4 and x � 4.

(d) The inflection points of the graph of f have the same x-coordinates as the turning
points of the graph of f	, namely �2, 0, and 3.

(e) A possible graph satisfying all the conditions is shown in Figure 4.26. 
Now try Exercise 23.

Caution: It is tempting to oversimplify a point of inflection as a point where the second
derivative is zero, but that can be wrong for two reasons:

1. The second derivative can be zero at a noninflection point. For example, consider
the function f (x) � x4 (Figure 4.27). Since f �(x) � 12x2 , we have  f �(0) � 0; how-
ever, (0, 0) is not an inflection point. Note that f � does not change sign at x � 0.

2. The second derivative need not be zero at an inflection point. For example, consider
the function f (x) � �3 x� (Figure 4.28). The concavity changes at x � 0, but there is a
vertical tangent line, so both  f 	(0)  and f �(0) fail to exist. 

Therefore, the only safe way to test algebraically for a point of inflection is to confirm a
sign change of the second derivative. This could occur at a point where the second deriva-
tive is zero, but it also could occur at a point where the second derivative fails to exist. 

To study the motion of a body moving along a line, we often graph the body’s position as
a function of time. One reason for doing so is to reveal where the body’s acceleration, given
by the second derivative, changes sign. On the graph, these are the points of inflection.

EXAMPLE 5   Studying Motion along a Line

A particle is moving along the x-axis with position function 

x�t� � 2t3 � 14t2 � 22t � 5, t � 0.

Find the velocity and acceleration, and describe the motion of the particle.

continued

Figure 4.26 A possible graph of f.
(Example 4)

Figure 4.25 The graph of f	, the deriva-
tive of f, on the interval [�4, 4].

y

x
0–2– 44 –1– 3 321

y

x
0–2– 44 –1– 3 321

Figure 4.27 The function  f (x) � x4

does not have a point of inflection at
the origin, even though f �(0) � 0.

Figure 4.28 The function f (x) � �3 x�
has a point of inflection at the origin, even
though f �(0) ≠ 0.

[– 4.7, 4.7] by [–3.1, 3.1]

[–4.7, 4.7] by [–3.1, 3.1]
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210 Chapter 4 Applications of Derivatives

SOLUTION 

Solve Analytically

The velocity is 

v�t� � x	�t� � 6t2 � 28t � 22 � 2�t � 1��3t � 11�,

and the acceleration is 

a�t� � v	�t� � x��t� � 12t � 28 � 4�3t � 7�.

When the function x�t� is increasing, the particle is moving to the right on the x-axis; when
x�t� is decreasing, the particle is moving to the left. Figure 4.29 shows the graphs of the
position, velocity, and acceleration of the particle.

Notice that the first derivative (v � x	) is zero when t � 1 and t � 11/3. These zeros par-
tition the t-axis into three intervals, as shown in the sign graph of v below:

x

+ – +

increasing decreasing increasingBehavior of x

right left rightParticle motion

Sign of v = x'

11
310

The particle is moving to the right in the time intervals [0, 1) and (11/3, �) and moving to
the left in (1, 11/3). 

The acceleration a(t) � 12t � 28 has a single zero at t � 7/3. The sign graph of the
acceleration is shown below:

The growth of an individual company, of a population, in sales of a new product, or of
salaries often follows a logistic or life cycle curve like the one shown in Figure 4.30. For ex-
ample, sales of a new product will generally grow slowly at first, then experience a 
period of rapid growth. Eventually, sales growth slows down again. The function f in 
Figure 4.30 is increasing. Its rate of increase, f 	, is at first increasing � f � � 0� up to the
point of inflection, and then its rate of increase, f 	, is decreasing � f � � 0�. This is, in a
sense, the opposite of what happens in Figure 4.21.

Some graphers have the logistic curve as a built-in regression model. We use this fea-
ture in Example 6.

x

concave down concave upGraph of x

decelerating acceleratingParticle motion

Sign of a = x"

0

– +

7
3

Figure 4.29 The graph of 
(a) x�t� � 2t3 � 14t2 � 22t � 5, t � 0,
(b) x	�t� � 6t2 � 28t � 22, and 
(c) x��t� � 12t � 28. (Example 5)

[0, 6] by [–30, 30]

(a)

[0, 6] by [–30, 30]

(b)

[0, 6] by [–30, 30]

(c)

Figure 4.30 A logistic curve 

y � 

1 � a

c
e�bx
 .

1

5

Point of
inflection

y

x

1

5

Point of
inflection

y

x

The accelerating force is directed toward the left during the time interval [0, 7/3], is mo-
mentarily zero at t � 7/3, and is directed toward the right thereafter. 

Now try Exercise 25.
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Section 4.3 Connecting f ′ and f″ with the Graph of f 211

EXAMPLE 6   Population Growth in Alaska

Table 4.2 shows the population of Alaska in each 10-year census between 1920 and 2000.

(a) Find the logistic regression for the data.

(b) Use the regression equation to predict the Alaskan population in the 2020 census.

(c) Find the inflection point of the regression equation. What significance does the
inflection point have in terms of population growth in Alaska?

(d) What does the regression equation indicate about the population of Alaska in the
long run?

SOLUTION

(a) Using years since 1900 as the independent variable and population as the 
dependent variable, the logistic regression equation is approximately

y �

1 � 7

8
1
9
.5
5
7
5
e
9
�

8
0.0516x
.

Its graph is superimposed on a scatter plot of the data in Figure 4.31(a). Store the
regression equation as Y1 in your calculator.

(b) The calculator reports Y1(120) to be approximately 781,253. (Given the uncer-
tainty of this kind of extrapolation, it is probably more reasonable to say “approxi-
mately 781,200.”)

(c) The inflection point will occur where y″ changes sign. Finding y″ algebraically
would be tedious, but we can graph the numerical derivative of the numerical deriva-
tive and find the zero graphically. Figure 4.31(b) shows the graph of y″, which is
nDeriv(nDeriv(Y1,X,X),X,X) in calculator syntax. The zero is approximately 83, so
the inflection point occurred in 1983, when the population was about 450,570 and
growing the fastest. 

(d) Notice that lim
x→�

� 895598, so the regression equation 

indicates that the population of Alaska will stabilize at about 895,600 in the long run.
Do not put too much faith in this number, however, as human population is depend-
ent on too many variables that can, and will, change over time. Now try Exercise 31.

Second Derivative Test for Local Extrema
Instead of looking for sign changes in y	 at critical points, we can sometimes use the fol-
lowing test to determine the presence of local extrema.

895598



1� 71.57e�0.0516x

Table 4.2 Population of Alaska

Years since 1900 Population

20 55,036
30 59,278
40 75,524
50 128,643
60 226,167
70 302,583
80 401,851
90 550,043

100 626,932

Source: Bureau of the Census, U.S. Chamber of

Commerce.

Figure 4.31 (a) The logistic regression
curve

y �

1 � 7

8
1
9
.5
5
7
5
e
9
�

8
0.0516x


superimposed on the population data
from Table 4.2, and (b) the graph of y″
showing a zero at about x � 83.

[12, 108] by [0, 730000]

(a)

Zero
X=82.76069 Y=0

[12, 108] by [–250, 250]

(b)

THEOREM 5 Second Derivative Test for Local Extrema

1. If f 	�c� � 0 and f ��c� � 0, then f has a local maximum at  x � c.

2. If f 	�c� � 0 and f ��c� � 0, then f has a local minimum at  x � c.

This test requires us to know f � only at c itself and not in an interval about c. This
makes the test easy to apply. That’s the good news. The bad news is that the test fails if
f ��c� � 0 or if f ��c� fails to exist. When this happens, go back to the First Derivative Test
for local extreme values.

In Example 7, we apply the Second Derivative Test to the function in Example 1.
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212 Chapter 4 Applications of Derivatives

EXAMPLE 7   Using the Second Derivative Test

Find the local extreme values of f �x� � x3 � 12x � 5.

SOLUTION

We have

f 	�x� � 3x2 � 12 � 3(x2 � 4)

f ��x� � 6x.

Testing the critical points  x � �2  (there are no endpoints), we find

f ���2� � �12 � 0 ⇒ f has a local maximum at  x � �2  and

f ��2� � 12 � 0 ⇒ f has a local minimum at  x � 2.

Now try Exercise 35.

EXAMPLE 8   Using f � and f � to Graph f

Let f 	�x� � 4x3 � 12x2.

(a) Identify where the extrema of f occur.

(b) Find the intervals on which f is increasing and the intervals on which f is decreasing.

(c) Find where the graph of f is concave up and where it is concave down.

(d) Sketch a possible graph for f.

SOLUTION

f is continuous since f 	 exists. The domain of f 	 is ���, ��, so the domain of f is also
���, ��. Thus, the critical points of f occur only at the zeros of f 	. Since

f 	�x� � 4x3 � 12x2 � 4x2�x � 3�,

the first derivative is zero at  x � 0  and  x � 3.

Intervals ⏐ x � 0 ⏐ 0 � x � 3 ⏐ 3 � x

Sign of f 	 ⏐ � ⏐ � ⏐ �

Behavior of f ⏐ decreasing ⏐ decreasing ⏐ increasing

(a) Using the First Derivative Test and the table above we see that there is no extremum
at  x � 0  and a local minimum at  x � 3.

(b) Using the table above we see that f is decreasing in ���, 0� and �0, 3�, and increas-
ing in �3, ��.

(c) f ��x� � 12x2 � 24x � 12x�x � 2� is zero at  x � 0  and  x � 2.

Intervals ⏐ x � 0 ⏐ 0 � x � 2 ⏐ 2 � x

Sign of f � ⏐ � ⏐ � ⏐ �

Behavior of f ⏐ concave up ⏐ concave down ⏐ concave up

We see that f is concave up on the intervals ���, 0� and �2, ��, and concave down 
on �0, 2�.

continued

Note

The Second Derivative Test does not

apply at x � 0 because f ��0� � 0. We

need the First Derivative Test to see that

there is no local extremum at x � 0.
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Section 4.3 Connecting f ′ and f″ with the Graph of f 213

Learning about Functions from Derivatives
We have seen in Example 8 and Exploration 1 that we are able to recover almost every-
thing we need to know about a differentiable function y � f �x� by examining y	. We can
find where the graph rises and falls and where any local extrema are assumed. We can
differentiate y	 to learn how the graph bends as it passes over the intervals of rise and fall.
We can determine the shape of the function’s graph. The only information we cannot get
from the derivative is how to place the graph in the xy-plane. As we discovered in Section
4.2, the only additional information we need to position the graph is the value of f at one
point.

(d) Summarizing the information in the two tables above we obtain

x � 0 ⏐ 0 � x � 2 ⏐ 2 � x � 3 ⏐ x � 3

decreasing ⏐ decreasing ⏐ decreasing ⏐ increasing

concave up ⏐ concave down ⏐ concave up ⏐ concave up

Figure 4.32 The graph for f has no ex-
tremum but has points of inflection where
x � 0 and x � 2, and a local minimum
where x � 3. (Example 8)

Figure 4.32 shows one possibility for the graph of f. Now try Exercise 39.

Finding f from f �

Let f 	�x� � 4x3 � 12x2.

1. Find three different functions with derivative equal to f 	�x�. How are the graphs
of the three functions related?

2. Compare their behavior with the behavior found in Example 8.

EXPLORATION 1

y � f(x)

Differentiable  ⇒
smooth, connected; graph
may rise and fall

y' � 0 ⇒ graph rises
from left to right;
may be wavy

y' � 0 ⇒ graph falls
from left to right;
may be wavy

y � f(x) y � f(x)

y'' � 0 ⇒ concave down
throughout; no waves;
graph may rise or fall

Inflection point
y'' � 0 ⇒ concave up
throughout; no waves;
graph may rise or fall

or or

y'' changes sign

y' � 0  and  y'' � 0
at a point; graph has
local maximum

y' � 0  and  y'' � 0
at a point; graph has
local minimum

or

y' changes 
sign ⇒ graph 
has local 
maximum or 
minimum 
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214 Chapter 4 Applications of Derivatives

Remember also that a function can be continuous and still have points of nondifferen-
tiability (cusps, corners, and points with vertical tangent lines). Thus, a noncontinuous
graph of f ′ could lead to a continuous graph of f, as Example 9 shows. 

EXAMPLE 9   Analyzing a Discontinuous Derivative

A function f is continuous on the interval [�4, 4]. The discontinuous function f	, with
domain [�4, 0) � (0, 2) � (2, 4], is shown in the graph to the right (Figure 4.33). 

(a) Find the x-coordinates of all local extrema and points of inflection of f.

(b) Sketch a possible graph of f.

SOLUTION

(a) For extrema, we look for places where  f	 changes sign. There are local maxima
at x � �3, 0, and 2 (where f	 goes from positive to negative) and local minima at
x � �1 and 1 (where f	 goes from negative to positive). There are also local minima
at the two endpoints x � �4 and 4, because f	 starts positive at the left endpoint and
ends negative at the right endpoint.

For points of inflection, we look for places where  f � changes sign, that is, where
the graph of f	 changes direction. This occurs only at x � �2. 

(b) A possible graph of f is shown in Figure 4.34. The derivative information deter-
mines the shape of the three components, and the continuity condition determines
that the three components must be linked together. Now try Exercises 49 and 53.

Figure 4.33 The graph of f ′ , a discon-
tinuous derivative.
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Figure 4.34 A possible graph of f. 
(Example 9)
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Finding f from f � and f �

A function f is continuous on its domain ��2, 4�, f ��2� � 5, f �4� � 1, and f 	
and f � have the following properties.

x ⏐ �2 � x � 0 ⏐ x � 0 ⏐ 0 � x � 2 ⏐ x � 2 ⏐2 � x � 4

f 	 ⏐ � ⏐ does not exist ⏐ � ⏐ 0 ⏐ �

f � ⏐ � ⏐ does not exist ⏐ � ⏐ 0 ⏐ �

1. Find where all absolute extrema of f occur.

2. Find where the points of inflection of f occur.

3. Sketch a possible graph of f.

EXPLORATION 2

Quick Review 4.3 (For help, go to Sections 1.3, 2.2, 3.3, and 3.9.)

In Exercises 1 and 2, factor the expression and use sign charts to
solve the inequality.

1. x2 � 9 � 0 (�3, 3) 2. x3 � 4x � 0 (�2, 0) � (2, �)

In Exercises 3–6, find the domains of f and f 	.

3. f �x� � xex 4. f �x� � x3�5

5. f �x� � 

x �

x
2


 6. f �x� � x2 �5

In Exercises 7–10, find the horizontal asymptotes of the function’s
graph.

7. y � �4 � x2 �ex y � 0 8. y � �x2 � x�e�x y � 0

9. y � 10. y � 

2 �

7
5
5
e
0
�0.1x


200



1 � 10e�0.5xf : all reals

f 	: all reals

f : x 
 2
f 	: x 
 2

f : all reals
f 	: x 
 0

f : all reals
f 	: x 
 0 y � 0 and y � 200 y � 0 and y � 375
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