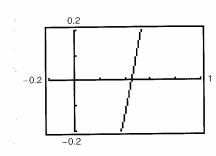
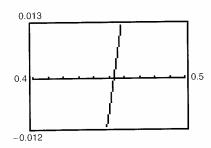
The bisection method for approximating the real zeros of a continuous function is similar to the method used in Example 8. If you know that a zero exists in the closed interval [a, b], the zero must lie in the interval [a, (a + b)/2] or [(a + b)/2, b]. From the sign of f([a + b]/2), you can determine which interval contains the zero. By repeatedly bisecting the interval, you can "close in" on the zero of the function.

TECHNOLOGY You can also use the zoom feature of a graphing utility to approximate the real zeros of a continuous function. By repeatedly zooming in on the point where the graph crosses the x-axis, and adjusting the x-axis scale, you can approximate the zero of the function to any desired accuracy. The zero of $x^3 + 2x - 1$ is approximately 0.453, as shown in Figure 1.38.





Zooming in on the zero of $f(x) = x^3 + 2x - 1$ Figure 1.38

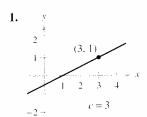
CERCISES FOR SECTIO

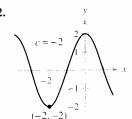
In Exercises 1-6, use the graph to determine the limit, and discuss the continuity of the function.

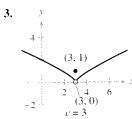
(a) $\lim_{x \to a} f(x)$

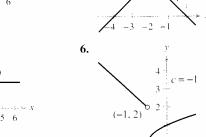
(b) $\lim f(x)$

(c) $\lim f(x)$









In Exercises 7-24, find the limit (if it exists). If it does not exist, explain why.

7.
$$\lim_{x \to 5} \frac{x - 5}{x^2 - 25}$$

8.
$$\lim_{x \to 2^{-}} \frac{2-x}{x^2-4}$$

7.
$$\lim_{x \to 5} \frac{x - 5}{x^2 - 25}$$
8. $\lim_{x \to 2^+} \frac{2 - x}{x^2 - 4}$
9. $\lim_{x \to -3^+} \frac{x}{\sqrt{x^2 - 9}}$
10. $\lim_{x \to 4^-} \frac{\sqrt{x} - 2}{x - 4}$

10.
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

11.
$$\lim_{x \to 0} \frac{|x|}{x}$$

12.
$$\lim_{x \to 2^+} \frac{|x-2|}{x-2}$$

13.
$$\lim_{\Delta x \to 0^{-}} \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x}$$

14.
$$\lim_{\Delta y \to 0^+} \frac{(x + \Delta x)^2 + x + \Delta x - (x^2 + x)}{\Delta x}$$

14.
$$\lim_{\Delta x \to 0^{+}} \frac{(x + \Delta x)^{2} + x + \Delta x - (x^{2} + x)}{\Delta x}$$
15.
$$\lim_{x \to 3^{-}} f(x), \text{ where } f(x) = \begin{cases} \frac{x + 2}{2}, & x \le 3\\ \frac{12 - 2x}{3}, & x > 3 \end{cases}$$

16.
$$\lim_{x \to 2} f(x)$$
, where $f(x) = \begin{cases} x^2 - 4x + 6, & x < 2 \\ -x^2 + 4x - 2, & x \ge 2 \end{cases}$

17.
$$\lim_{x \to 1} f(x)$$
, where $f(x) =\begin{cases} x^3 + 1, & x < 1 \\ x + 1, & x \ge 1 \end{cases}$

18.
$$\lim_{x \to 1^+} f(x)$$
, where $f(x) = \begin{cases} x, & x \le 1 \\ 1 - x, & x > 1 \end{cases}$

19.
$$\lim_{x \to \pi} \cot x$$

20.
$$\lim_{x \to \pi/2} \sec x$$

19.
$$\lim_{x \to \pi} \cot x$$

21. $\lim_{x \to 4} (3[x] - 5)$

22.
$$\lim_{x \to 2^{-}} (2x - [x])$$

23.
$$\lim_{x \to 3} (2 - [-x]]$$

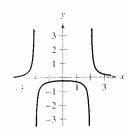
23.
$$\lim_{x \to 3} (2 - [-x])$$
 24. $\lim_{x \to 1} \left(1 - \left[-\frac{x}{2}\right]\right)$

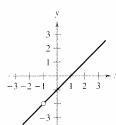
5.

In Exercises 25-28, discuss the continuity of each function.

25.
$$f(x) = \frac{1}{x^2 - 4}$$

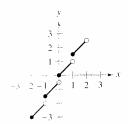
26.
$$f(x) = \frac{x^2 - 1}{x + 1}$$

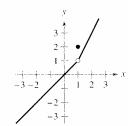




27.
$$f(x) = \frac{1}{2} [x] + x$$

28.
$$f(x) = \begin{cases} x, & x < 1 \\ 2, & x = 1 \\ 2x - 1, & x > 1 \end{cases}$$





In Exercises 29-32, discuss the continuity of the function on the closed interval.

29.
$$g(x) = \sqrt{25 - x^2}$$
, [-5, 5]

30.
$$f(t) = 3 - \sqrt{9 - t^2}$$
, [-3, 3]

31.
$$f(x) = \begin{cases} 3 - x, & x \le 0 \\ 3 + \frac{1}{2}x, & x > 0 \end{cases}$$
 [-1, 4]

32.
$$g(x) = \frac{1}{x^2 - 4}$$
, [-1, 2]

In Exercises 33–54, find the x-values (if any) at which f is not continuous. Which of the discontinuities are removable?

33.
$$f(x) = x^2 - 2x + 1$$
 34. $f(x) = \frac{1}{x^2 + 1}$

34.
$$f(x) = \frac{1}{x^2 + 1}$$

35.
$$f(x) = 3x - \cos x$$

36.
$$f(x) = \cos \frac{\pi x}{2}$$

37.
$$f(x) = \frac{x}{x^2 - x}$$

38.
$$f(x) = \frac{x}{x^2 - 1}$$

39.
$$f(x) = \frac{x}{x^2 + 1}$$

40.
$$f(x) = \frac{x-3}{x^2-9}$$

41.
$$f(x) = \frac{x+2}{x^2-3x-10}$$
 42. $f(x) = \frac{x-1}{x^2+x-2}$

42.
$$f(x) = \frac{x-1}{x^2 + x - 2}$$

43.
$$f(x) = \frac{|x|+2|}{|x|+2|}$$

44.
$$f(x) = \frac{|x-3|}{x-3}$$

45.
$$f(x) = \begin{cases} x, & x \le 1 \\ x^2, & x > 1 \end{cases}$$

46.
$$f(x) = \begin{cases} -2x + 3, & x < 1 \\ x^2, & x \ge 1 \end{cases}$$

47.
$$f(x) = \begin{cases} \frac{1}{2}x + 1, & x \le 2\\ 3 - x, & x > 2 \end{cases}$$

48.
$$f(x) = \begin{cases} -2x, & x \le 2\\ x^2 - 4x + 1, & x > 2 \end{cases}$$

49.
$$f(x) = \begin{cases} \tan \frac{\pi x}{4}, & |x| < 1 \\ x, & |x| \ge 1 \end{cases}$$

50. $f(x) = \begin{cases} \csc \frac{\pi x}{6}, & |x - 3| \le 2 \\ 2, & |x - 3| > 2 \end{cases}$

50.
$$f(x) = \begin{cases} \csc \frac{\pi x}{6}, & |x-3| \le 2\\ 2, & |x-3| > 2 \end{cases}$$

51.
$$f(x) = \csc 2x$$

52.
$$f(x) = \tan \frac{\pi x}{2}$$

53.
$$f(x) = [x - 1]$$

54.
$$f(x) = 3 - [x]$$

In Exercises 55 and 56, use a graphing utility to graph the function. From the graph, estimate

$$\lim_{x \to 0} f(x)$$

$$\lim_{x\to 0^-} f(x).$$

Is the function continuous on the entire real line? Explain.

55.
$$f(x) = \frac{|x^2 - 4|x}{x + 2}$$

55.
$$f(x) = \frac{|x^2 - 4|x}{x + 2}$$
 56. $f(x) = \frac{|x^2 + 4x|(x + 2)}{x + 4}$

In Exercises 57–60, find the constants a and b such that the function is continuous on the entire real line.

57.
$$f(x) = \begin{cases} x^3, & x \le 2 \\ ax^2, & x > 2 \end{cases}$$

57.
$$f(x) = \begin{cases} x^3, & x \le 2 \\ ax^2, & x > 2 \end{cases}$$
 58. $g(x) = \begin{cases} \frac{4 \sin x}{x}, & x < 0 \\ a - 2x, & x \ge 0 \end{cases}$

59.
$$f(x) = \begin{cases} 2, & x \le -1 \\ ax + b, & -1 < x < 3 \\ -2, & x \ge 3 \end{cases}$$

60.
$$g(x) = \begin{cases} \frac{x^2 - a^2}{x - a}, & x \neq a \\ 8, & x = a \end{cases}$$

In Exercises 61-64, discuss the continuity of the composite function h(x) = f(g(x)).

61.
$$f(x) = x^2$$

62.
$$f(x) = \frac{1}{\sqrt{x}}$$

$$g(x) = x - 1$$

$$g(x) = x - 1$$

63.
$$f(x) = \frac{1}{x-6}$$
 64. $f(x) = \sin x$

$$\mathcal{L}A = \mathcal{L}(\omega) = \sin \omega$$

$$g(x) = x^2 + 5$$

$$a(y) = y$$

In Exercises 65–68, use a graphing utility to graph the function. Use the graph to determine any x-values at which the function is not continuous.

65.
$$f(x) = [\![x]\!] - x$$

66.
$$h(x) = \frac{1}{x^2 - x - 2}$$

65.
$$f(x) = [x] - x$$
 66. $h(x) = \frac{1}{x^2 - x - 2}$ **67.** $g(x) = \begin{cases} 2x - 4, & x \le 3 \\ x^2 - 2x, & x > 3 \end{cases}$

43.
$$f(x) = \frac{|x+2|}{|x+2|}$$
44. $f(x) = \frac{|x-3|}{|x-3|}$
67. $g(x) = \begin{cases} 2x-4, & x \le 3 \\ x^2-2x, & x > 3 \end{cases}$
45. $f(x) = \begin{cases} x, & x \le 1 \\ x^2, & x > 1 \end{cases}$
46. $f(x) = \begin{cases} -2x+3, & x < 1 \\ x^2, & x \ge 1 \end{cases}$
68. $f(x) = \begin{cases} \cos x-1, & x < 0 \\ 5x, & x \ge 0 \end{cases}$