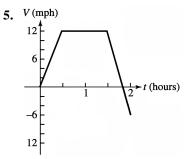

1.

Advanced Placement Calculus AB Test

Section I-Part A (55 minutes)

Choose the best answer for each question. Your score is determined by subtracting one-fourth of the number of wrong answers from the number of correct answers. **Calculators are not permitted.**

For the graph shown, at which point is it true that $\frac{dy}{dx} < 0$ and $\frac{d^2y}{dx^2} < 0$?


(A) A (B) B (C) C (D) D (E) E

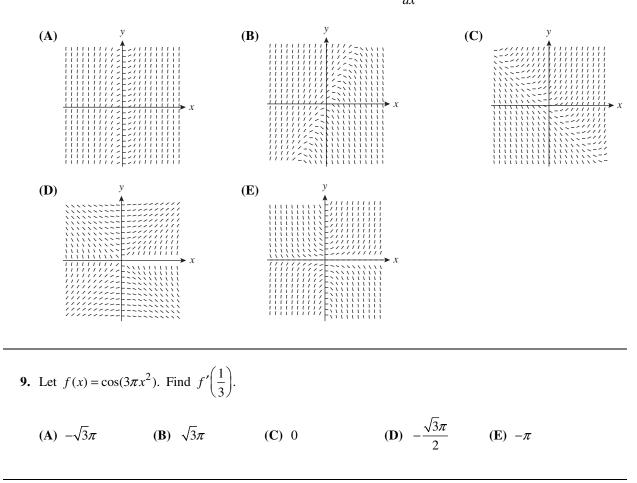
- **2.** Find the area of the region bounded by the *x*-axis and the graph of $y = (x+1)(x-2)^2$.
 - (A) $\frac{5}{4}$ (B) $2\frac{3}{4}$ (C) $5\frac{1}{4}$ (D) $6\frac{1}{4}$ (E) $6\frac{3}{4}$
- **3.** Which of the following is an antiderivative of $x^2 \sec^2 x^3$?
 - (A) $2x \sec^2 x^3 + 6x^4 \sec^2 x^3 \tan x^3$
 - **(B)** $2x \sec^2 x^3 + 6x^3 \sec x^3$
 - (C) $\frac{1}{3}\tan x^3 5$
 - **(D)** $3\tan x^3 + \pi$
 - (E) $-\frac{1}{3}\cot x^3 + 4$

Sample AB Test 57

4. Line *L* is tangent to the curve defined by $2xy^2 - 3y = 18$ at the point (3, 2). The slope of line *L* is

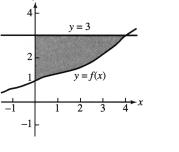
(A)
$$\frac{21}{8}$$
 (B) $\frac{32}{3}$ (C) $-\frac{10}{21}$ (D) $\frac{8}{21}$ (E) $-\frac{8}{21}$

A bicyclist rides along a straight road starting from home at t = 0. The graph above shows the bicyclist's velocity as a function of t. How far from home is the bicyclist after 2 hours?


(A) 13 miles	(B) 16.5 miles	(C) 17.5 miles	(D) 18 miles	(E) 20 miles	
--------------	-----------------------	----------------	---------------------	---------------------	--

6. Find the value of x at which the graph of $y = \frac{1}{x} + \sqrt{x}$ has a point of inflection.

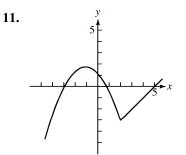
(A) 2	(B) $4^{2/3}$	(C) 4	(D) 6	(E) 8
----------------	----------------------	----------------	--------------	--------------


7. Find
$$\lim_{x \to \infty} \frac{2x - 4x^3}{8x^3 + 4x^2 - 3x}$$
.
(A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) 1 (D) $-\frac{1}{2}$ (E) $-\frac{3}{4}$

8. Which of the following is a slope field for the differential equation $\frac{dy}{dx} = -2x + y$?

10. Assume that f(x) is a one-to-one function. The area of the shaded region is equal to which of the following definite integrals?

- $I. \quad \int_0^4 [f(x) 3] dx$
- II. $\int_4^0 [f(x) 3] dx$
- III. $\int_{1}^{3} f^{-1}(y) \, dy$


(A) I only

(**B**) II only

(C) III only

(**D**) I and III

(E) II and III

The graph of a function y = f(x) is shown above. Which of the following are true for the function f?

- I. f'(2) is defined.
- II. $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} f(x)$
- III. f'(x) < 0 for all x in the open interval (-1, 2).

(A) I only	(B) II only	(C) III only	(D) II and III	(E) I, II and III	
------------	----------------------	--------------	-------------------------	-------------------	--

12. Let
$$f(x) = \sin^{-1} x$$
. Find $f'\left(\frac{\sqrt{2}}{2}\right)$.
(A) $\frac{\pi}{4}$ (B) $\frac{\sqrt{2}}{2}$ (C) $\frac{1}{2}$ (D) $\sqrt{2}$ (E) Undefined

- **13.** Evaluate $\int (\cos x e^{2x}) dx$.
 - (A) $-\sin x \frac{1}{2}e^{2x} + C$ (B) $\sin x - \frac{1}{2}e^{2x} + C$ (C) $-\sin x - 2e^{2x} + C$ (D) $\sin x - 2e^{2x} + C$ (E) $-\cos x - \frac{1}{2}e^{2x} + C$

60 Sample AB Test

_

14. Let $f(x) = e^{x^3 - 2x^2 - 4x + 5}$. Then <i>f</i> has a local minimum at $x =$							
(A) -2	(B) $-\frac{2}{3}$	(C) $\frac{2}{3}$	(D) 1	(E) 2			
15. The acceleration of a particle moving along the x-axis is $a(t) = 12t - 10$.At $t = 0$, the velocity is 4.At $t = 1$, the position is $x = 8$.Find the position at $t = 2$.(A) 5(B) 4(C) 10(D) 11(E) 7							

16. Let *f* be differentiable for all real numbers. Which of the following must be true for any real numbers *a* and *b*?

I.
$$\int_{2}^{a} f(x) dx = \int_{2}^{b} f(x) dx + \int_{b}^{a} f(x) dx$$

II.
$$\int_{a}^{b} ([f(x)]^{2} + f'(x)) dx = [f(b)]^{2} - [f(a)]^{2}$$

III.
$$\int_{a}^{b} 3f(x) dx = 3 \int_{a}^{b} f(x) dx$$

(A) I only (B) II only (C) I and II (D) I and III (E) I, II, and III

17. Find an equation of the line normal to the graph of $y = \frac{3x}{x^2 - 6}$ at x = 3.

(A) 5x + y = 18 (B) 5x - y = 12 (C) 5x + 3y = 24 (D) x - 5y = -12 (E) x + y = 6

18. Let
$$g(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$
. For what value of x does $g(x) = 2$?
(A) $x = 1$ (B) $x = 2$ (C) $x = 3$ (D) $x = 4$ (E) $x = 5$

19. Let *f* be a differentiable function of *x* that satisfies f(1) = 7 and f(4) = 3. Which of the following conditions would guarantee that the tangent line at x = c is parallel to the secant line joining (1, f(1)) to (4, f(4))?

(A)
$$f(c) = \frac{3}{2}$$
 (B) $f(c) = 5$ (C) $f'(c) = -\frac{3}{4}$ (D) $f'(c) = -\frac{4}{3}$ (E) $f(c) = -\frac{4}{3}$

- **20.** Let $f(x) = x^3 12x$. Which statement about this function is false?
 - (A) The function has a relative minimum at x = 2.
 - (B) The function is increasing for values of x between -2 and 2.
 - (C) The function has two relative extrema.
 - (**D**) The function is concave upward for x > 0.
 - (E) The function has one inflection point.

21.
$$\int_{2}^{3} 8x(x^{2}-5)dx =$$

(A) $\frac{74}{3}$ (B) 30 (C) 90 (D) 112 (E) $\frac{370}{3}$

22. Let
$$f(x) = \frac{d}{dx} \int_0^x \sqrt{t^2 + 16} \, dt$$
. What is $f(-3)$?
(A) -5 (B) -4 (C) 3 (D) 4 (E) 5

23. If
$$\frac{dy}{dx} = xy^2$$
 and $y = -\frac{1}{3}$ when $x = 2$, what is y when $x = 4$?
(A) $-\frac{1}{3}$ (B) $-\frac{1}{5}$ (C) $-\frac{1}{9}$ (D) $\frac{1}{3}$ (E) $\frac{1}{9}$

62 Sample AB Test

- **24.** Use the Trapezoidal Rule with n = 3 to approximate the area between the curve $y = x^2$ and the *x*-axis for $1 \le x \le 4$.
 - (A) 14 (B) 21 (C) 21.5 (D) 29 (E) 30

25. Le	25. Let $f(x)$ be a continuous function that is defined for all real numbers <i>x</i> .						
If $f(x) = \frac{x^2 - x - 6}{x^2 - 5x + 6}$ when $x^2 - 5x + 6 \neq 0$, what is $f(3)$?							
(A	.) 5	(B) 4	(C) 2	(D) 1	(E) 0		

- **26.** Find the derivative of $\cos^3 2x$.
 - (A) $-\sin^3 2x$
 - **(B)** $-6\cos^2 2x$
 - (C) $6\cos^2 2x\sin 2x$
 - **(D)** $-3\cos^2 2x\sin 2x$
 - (E) $-6\cos^2 2x\sin 2x$
- 27. Let f be a twice-differentiable function whose derivative f'(x) is increasing for all x. Which of the following must be true of all x?
 - I. f(x) > 0
 - II. f'(x) > 0
 - III. f''(x) > 0

28. The function $f(x) = x^3 - 6x^2 + 9x - 4$ has a local maximum at

(A) x = 0 (B) x = 1 (C) x = 2 (D) x = 3 (E) x = 4